1. Introduction

A huge amount of information has been accumulated on the World Wide Web and it is still growing day by day. Web information is now indispensable to our daily activities. On the other hand, various sensors in the real world have been connected to each other via networks and ubiquitous environments will soon be available. The integration of Web information and sensory information will enable us to enrich the communication among humans. For example, a system could monitor a human conversation and provide Web information related to the conversation topic. With the aim of enriching human communication in ubiquitous environments, NTT Communication Science Laboratories have been conducting research on the Real-World Semantic Web.

We propose a Web search framework based on spatial and temporal metadata. This framework is based on the Semantic Web [1]. In the Semantic Web, each Web page is annotated with metadata based on semantic structures, called ontologies. An ontology represents the meaning of terms in vocabularies and the relationships among those terms. To deal with spatial and temporal search conditions, we define ontologies for time and space. Based on this framework, we have constructed a prototype system that allows users to make queries in natural language. After briefly reviewing the Real-World Semantic Web, we present our Web search framework and describe the prototype system.

2. Real-World Semantic Web

The concept of the Real-World Semantic Web is illustrated in Fig. 1. Various sensors, such as GPS (Global Positioning System) devices attached to users and video cameras located in the environment, connected to each other via networks provide “ubiquitous contents.” The core technologies for the Real-World Semantic Web are query processing for the Semantic Web and semantic integration of ubiquitous contents. We have been developing technologies for Web searches based on spatial and temporal metadata, approximate query reformulation for multiple ontologies [2], [3], techniques for understanding conversations based on ontologies, and a personal repository for inter-personal communication. In this article, we focus on Web searches based on spatial and temporal metadata.

3. Spatial and temporal metadata and ontologies

Imagine you have arrived at a trip destination late at night and want to have a late dinner. You might desire information about “the nearest restaurant that is cur-
rently open”. This involves both spatial search conditions (e.g., “nearest to the current location”) and temporal search conditions (e.g., “currently operating”).

The current time and location can be obtained by sensors such as a watch and a GPS. However, keyword-based Web search engines cannot handle these kinds of sensory information. A Web search based on temporal conditions requires the temporal inference that the current time is within the operating hours described in the Web pages. Furthermore, if a restaurant’s Web page gives its regular holiday, then we need the temporal inference that the current date does not match it.

There are various semantic structures for time such as time intervals (e.g., “from 5 pm to 11 pm”), day of the week, date, and month. Therefore, a Web search based on temporal conditions requires ontologies for time that intuitively correspond to dictionaries for time. Similarly, a Web search based on spatial conditions requires ontologies for space, such as street address and latitude and longitude.

Our Web search framework is based on spatial and temporal metadata. In this framework, each Web page is annotated with metadata based on ontologies for time and space. Figure 2 shows an example. The left-hand side indicates the Semantic Web layers for ontology, metadata, and contents.

The ontology layer provides a framework for describing the semantic structure. Ontologies are described using classes and properties. For example, “Restaurant” and “Location” are classes, and “locatedAt” and “openHours” are properties. Classes are characterized by their properties. There are several built-in properties, such as “subClassOf” for describing class hierarchies. For example, Fig. 2 shows the following definitions. (We indicate the “subClassOf” property by a solid arrow for easy visualization.)

- “Japanese Restaurant” and “French Restaurant” are subclasses of the “Restaurant” class.
- “Restaurant” has the properties “locatedAt,” “openHours,” and “regularHoliday.”
- The values of “locatedAt” must belong to the “Location” class. (The “Location” class is called the “range” of the “locatedAt” property.) Similarly, the ranges of “openHours” and “regularHoliday” are the classes “TimeInterval” and “DayOfWeek,” respectively.

The Metadata layer provides a framework for describing metadata with which contents are annotated based on ontologies. For example, the Web page for “Gion” (Gion is a district in the city of Kyoto, but
here the context is the name of a restaurant) has the metadata shown in Fig. 2. This metadata indicates the following.

- “Gion” is an instance of “Japanese Restaurant.”
- “Gion” is “locatedAt” Kyoto, its opening hours are from 17:00 to 23:00, and its regular holiday is Sunday.

In our framework, users can make queries based on ontologies. For example, one can make a query about a restaurant that is currently open as follows.

- Find an instance of “Restaurant” class such that the current date does not match its regular holiday and the current time is inside the time interval of its opening hours.

If the current time is 10 p.m. on Tuesday, then “Gion” will be returned as a candidate answer to this query when we use the ontology and metadata.

4. Web search system based on spatial and temporal metadata

The system architecture of our prototype is shown in Fig. 3. This system lets users make queries in natural language, such as “find the nearest restaurant that is currently open.” The query analysis module extracts spatial and temporal search conditions from the user input and formulates a query based on ontologies. We adapted the query analysis module of the question answering system SAIQA (System for Advanced Interactive Question Answering) developed at NTT Communication Science Laboratories. For the formulated query, Web pages are retrieved based on spatial and temporal metadata, as described above. Search results are displayed on a map and in tree and list views.

Figure 4 illustrates the user interface of the Web search system. In this example, a user inputs the query “find bus stops near Kinkakuji” in Japanese. The query analysis module formulates a query for the Web pages of “Kinkakuji” and bus stops near this famous temple. The search results are displayed on the map. The upper left icon is an anchor of the Web page for “Kinkakuji” and represents its location on the map. Similarly, the center icon is an anchor of the Web page for the nearest bus stop (“Kinkakuji-Mae”). The search results are also displayed in 2D/3D views and list view.

If we incorporate a route finding system into this
system, we can provide various services related to regions. However, the ontologies for those services may differ. We can overcome this problem by using approximate query reformulation for multiple ontologies [2], [3].

5. Conclusion

Spatial information and temporal information play important roles in dealing with real-world information in ubiquitous environments. Our Web search framework based on spatial and temporal metadata enables users to make queries based on ontologies for time and space. Our prototype system based on this framework lets users make queries in natural language. The current version presumes explicit text input from users in natural language, but we have also been developing technologies for understanding conversations based on ontologies. Together with these technologies, we plan to construct a system that monitors human conversation and provides Web information related to the conversation topic.
The Real-World Semantic Web requires semantic integration of ubiquitous contents. As a first step, we have been developing an efficient method to handle moving object trajectories [4]. This method enables users to find people who are viewing similar exhibits based on their trajectories at an event site. People with similar interests will be able to enjoy much richer and deeper communication by using an ad-hoc electronic bulletin board and accessing Web information related to the exhibits.

References