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1. Introduction

Recent progress in digital signal processing devices
enables the prototyping of software radio equipment
[1], [2]. The software radio architecture and various
primitive test beds have already been reported [3]-[5].
However, few papers have described software radio
prototypes of actual wireless systems that include not
only physical layer processes but also high-layer pro-
tocols. Moreover, although download procedures and
the network architecture for over-the-air (OTA)
downloading has been discussed [6], [7], neither the
implementation of an OTA download protocol nor the
performance evaluation of prototypes has been
reported. In addition, system re-configuration, which
is one of the most important characteristics of soft-
ware radio, has not been reported. 

In 2000, we reported an SDR prototype that sup-
ported only narrow bandwidth systems (several hun-
dred kilohertz) such as PDC (Personal Digital Cellu-
lar) system and PHS (Personal Handy-phone System)
[8]. Because pre-/post-processors (PPPs) are used to
achieve high speed, real-time signal processing
becomes a bottleneck: the prototype could not imple-
ment wideband wireless communication systems

such as wireless LANs. This paper describes an
advanced SDR prototype that uses a newly developed
flexible-rate pre-/post-processor (FR-PPP) to offer
improved bandwidth (>20 MHz) and flexibility. It
can handle wireless LAN systems that use the direct
sequence spread spectrum (DSSS) scheme. The pro-
totype has successfully demonstrated switching
between PHS and a wireless LAN (IEEE 802.11). It
also implements OTA downloading.

2. Design of the platform 

The prototype consists of three stages: the radio fre-
quency (RF), intermediate frequency (IF), and base-
band (BB) stages. The RF and IF stages consist of
multiband analog circuits. Analog-to-digital (A/D)
conversion is performed at the IF. The digital IF and
BB stages consist only of programmable devices.
Figure 1 shows a block diagram of the platform.
Table 1 lists its major device specifications. It uses
the multiprocessor architecture, shown in Fig. 2,
which consists of four digital signal processors
(DSPs), a central processing unit (CPU), and three
flexible-rate pre-/post-processors (FR-PPPs). A 64-
bit VME bus connects the DSPs, CPU, and external
interface modules. The DSP module is a general-pur-
pose DSP board consisting of four fixed-point arith-
metic chips, each with a 200-MHz clock and maxi-
mum operating power of 1600 MIPS. The CPU is a
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400-MHz PowerPC. The real-time operating system
is VxWorks. Memories, a hard disk, and man-
machine interface devices for user operation are con-
nected to the CPU via local and expansion buses. For
PHS operation, the external interface module pro-
vides an ISDN service in the cell station (CS) plat-
form, and voice and bearer services in the personal
station (PS) platform. This is the only difference
between the CS and PS platforms. For the wireless
LAN operation, the CPU module provides an Ether-
net interface in both the access point (AP) and station
(STA) platforms. The platform has three independent
RF/IF branches to support simultaneous multimode
operation and/or smart antennas in the future.

2.1   Multiband RF/IF and A/D and D/A circuits
The RF signal received by the antenna is down-con-

verted by analog circuits to an IF signal and then A/D
converted. A multiband RF/IF circuit based on the
super-heterodyne scheme was developed. Multiband
operation at 1.5/1.9/2.45 GHz was achieved using a
single amplifier by switching bandpass filters,
according to the PDC, PHS, and IEEE 802.11 stan-
dards. A multiband monopole antenna that resonates
at these frequencies is used. 

A/D conversion is performed by under-sampling
the IF signal with center frequency of 66 MHz and
bandwidth of 22 MHz using an analog-to-digital con-
verter (ADC) with 12-bit resolution and sampling rate
of 88 MSPS. An automatic gain control (AGC) circuit
is set before the ADC. D/A conversion is performed
using a digital-to-analog converter (DAC) with 14-bit
resolution after up-sampling the BB signal with cen-
ter frequency of 22 MHz and bandwidth of 22 MHz.
The imaging at the center frequency of 66 MHz and
bandwidth of 22 MHz is used as the IF signal.
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Fig. 1.   Block diagram of the prototype.
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Fig. 2.   Multiprocessor architecture.

DSP TMS320C6201×4 (1600×4=6400 MIPS, 200 MHz)

CPU PowerPC750 (400 MHz)

OS VxWorks 5.2 (real-time operating system)

ADC IF undersampling (12-bit, 88 MSPS)

Table 1.  Major device specifications of the platform.
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2.2   Reconfigurable digital IF part
The IF corresponds to a clock-rate that is too high

to be handled by the BB processors, so PPPs are used
to achieve the required high-speed real-time digital
processing, including filtering, waveform-shaping,
and spectrum de-spreading. 

Our new FR-PPP consists of field programmable
gate arrays (FPGAs) and a direct digital synthesizer
(DDS). Each branch uses two one-megagate FPGAs
for pre- and post-processing. Figure 3 shows the con-
figurations of the receiving blocks of a conventional
PPP and the FR-PPP. Conventional PPPs (commer-
cially available digital up/down converters) are com-
posed of parameter-preset hard-wired circuits includ-
ing various kinds of filters to support the wireless sys-
tems targeted [9]-[12]. Therefore, their circuit scale is
excessive and their bandwidth is restricted to about
1–5 MHz. On the other hand, the circuit scale of FR-
PPPs is much smaller because the FPGA can flexibly
act as the filters needed for each system. In addition,
while conventional PPPs use complicated interpola-
tion circuits composed of a numerically controlled
oscillator (NCO) and a re-sampler to support the var-
ious clock-rates of the targeted wireless systems, the
DDS in the FR-PPP directly generates the required
clock-rates in an arbitrary manner. This also reduces
the circuit scale and offers high-speed operation.
These breakthroughs enable a small circuit scale
(75% smaller), a wide bandwidth (>20 MHz), and a
very flexible SDR that can support wireless LANs as
well as 2G systems such as PHS. Figures 4 and 5

show detailed configurations of the FR-PPP for PHS
mode and wireless LAN mode, respectively [13].

2.3   Reconfigurable baseband (BB) part
The prototype uses a CPU and DSPs to perform BB

processing and control. The CPU handles high-layer
protocols including PHS call control and media
access control (MAC) for the wireless LAN. Physical
layer processes such as modulation and demodulation
and voice coding and decoding are handled by the
DSPs. Each DSP has computational power of 1600
MIPS, and both transmitting and receiving processes
are performed by one DSP. Table 2 summarizes the
function assignment to the processors. 

3. Design of the software

3.1   Software architecture
The SDR prototype operates as the terminal of a

specific wireless system after the system’s software
has been loaded into its processors. The programs
written for the prototype reproduce almost all of the
key operating functions of PHS and the DSSS
scheme of IEEE 802.11 wireless LAN (infrastructure
mode) offered by regular commercial terminals. PHS
is a four-channel TDMA-TDD (Time Division Mul-
tiple Access, Time Division Duplex) wireless system
that was standardized by Japanese RCR STD-28 [14].
The codec uses a 32-kbit/s ADPCM and the modula-
tion/demodulation schemes are π/4-shift QPSK/inco-
herent detection. The IEEE 802.11 wireless LAN
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Fig. 3.   Configurations of conventional PPP and FR-PPP (receiving blocks). 
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supports multi-rate transmission by using the DBPSK
and DQPSK modulation schemes [15]. Table 3 shows
the major parameters of both systems. 

The software architecture of SDRs has been dis-
cussed in the SDR forum [7]. Architecture selection
strongly depends on the OS, API, and protocol stack,
and affects program overhead and system perfor-
mance. It also influences future expandability. (Note:
In this paper, the term API is used in the strict sense
defined in the SDR forum.) 

Figure 6 shows the program component architec-
ture of the prototype. A system control program, an
OTA download program, and communication control
programs run on the real-time operating system. The
system control program handles the user interface,
and system management and control. It executes the
communication control programs and the OTA down-
load program. The OTA download program, which is
a CPU program, downloads communication control

programs from the OTA download server. 
The communication control programs are packaged

binary files: each consists of CPU, DSP, and FR-PPP
programs containing a wireless system protocol. The
CPU and DSP programs were written in the C pro-
gramming language and the FPGA configuration data
of the FR-PPP was written in the Verilog hardware
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Table 2.  Function assignment to processors.

PHS (RCR STD-28) WLAN (IEEE 802.11)

1.9 GHz 2.45 GHzFrequency

TDMA-TDD CSMA-CAAccess method

π/4-QPSK DSSSModulation

384 kbit/s 11 Mchip/sAir bit-rate

2 kbit/s 1 Mbit/s, 2 Mbit/sUser data-rate

Mobility management,
authentication, billing,
etc.

Power management,
etc.

Omitted functions

Table 3.  Major parameters of wireless systems implemented.

Fig. 4.   FR-PPP configuration for PHS mode.

Fig. 5.   FR-PPP configuration for wireless LAN mode. 
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definition language (HDL). 

3.2   PHS program
In the PHS communication control program, the

CPU program handles call control tasks and a DSP-
task-management task. The priority of these tasks is
set by the real-time operating system considering the
processing time of each task. PHS imposes strict pro-
cessing limits on the DSP tasks to achieve real-time
communication because it uses the TDMA-TDD
access scheme. Therefore, the scheduling of DSP
tasks should be pre-assigned and the DSP loads of the
tasks should be appropriately shared to avoid over-
loads. Table 4 shows an example of DSP task sched-
uling. The DSP-task-management task directs the
execution of these DSP tasks via an API between the
CPU and DSP programs as shown in Fig. 7. 

First, the CPU program writes an API command
and related parameters into a shared memory. Next it
interrupts the DSP program, which is synchronized to
TDMA slot timing. The interruption moves the
access authority of the shared memory from the CPU
to the DSP. The DSP program reads the shared mem-
ory to obtain the API command and parameters. After
the DSP program has finished executing the task, the
DSP program writes the result into the shared memo-
ry and interrupts the CPU program. This interruption
returns the access authority to the CPU, and the CPU
program recognizes the completion of the API com-
mand, and the CPU program’s state transits. Real-
time signal processing can be achieved by performing
these controls in each TDMA slot. 

3.3   IEEE 802.11 wireless LAN program
In the wireless LAN communication control pro-

gram, MAC layer controls and physical layer
processes are basically assigned to the CPU and DSP
programs, respectively. Detailed descriptions of this
are shown in [16].

3.4   Over-the-air download program
To implement OTA downloading, we developed an

OTA download protocol and a download server. The
protocol should be as independent of the lower layer

as possible to allow it to support any wireless com-
munication system, so our protocol is based on
TCP/IP. Figure 8 shows its protocol stack. Since this
protocol works over TCP/IP, it is not affected by a
change in the communication mode. It not only
downloads the software, but also authenticates and
encrypts the data using SSL (Secure Socket Layer).
To ensure secure downloads, the 128-bit next-gener-
ation block cipher “Camellia,” which was co-devel-
oped by NTT and Mitsubishi Electric Corporation,
was implemented as the chip algorithm of SSL [17].
Figure 9 shows the OTA download sequence. When
the user requests a software download, the prototype
attempts to connect to an OTA download server by

Real-time operating system (VxWorks)

System
control

program
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download
program

Communication
control

program #1

Communication
control

program #N
•  •  •

Fig. 6.   Program component architecture.
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SSL, and the server authenticates the user by SSL. If
user authentication succeeds, the encrypted data is
transmitted and received within the SSL session. The
prototype transmits terminal information including
CPU specifications, DSP specifications, OS informa-

tion, and vendor information to the download server
using header fields as shown in Fig. 10. The down-
load server lists only those software packages that are
suitable for the prototype and the user selects the
desired module for downloading. The prototype
downloads and verifies the software. If verification
succeeds, the prototype notifies the download server
of download completion. Finally, the prototype
releases the SSL session.

4. Performance evaluation

4.1   FR-PPP performance
To evaluate the basic physical-layer performance,

we measured the output signals of the FR-PPP. The
spectrum at the FR-PPP transmitter output for wire-
less LAN mode is shown in Fig. 11. We found that the
measured spectrum satisfied the transmission spec-
trum mask provided in IEEE 802.11 (11 MHz<
 f–fc <22 MHz; less than –30 dBr,  f–fc >22 MHz;
less than –50 dBr) [15]. Figure 12 shows the receiver

Fig. 8.   Over-the-air download protocol stack.
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Fig. 11.   Transmitter spectrum for wireless LAN mode.
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output of the FR-PPP for wireless LAN mode. Peaks
were monitored every 22 samples for 11 Mchip/s,
which were twice-oversampled data.

The transmitter output spectrum for PHS mode is
shown in Fig. 13. Figure 14 shows the constellation
for PHS mode. The measured error vector magnitude
was 1.9%. These results confirm that the proposed
FR-PPP functioned correctly for both wireless LAN
and PHS modes.

The utilization of the FPGA in each mode was less
than 33% (Table 5), though a megagate-scale FPGA
was utilized to allow for possible expansion of the

FR-PPP design.

4.2   System performance
Figure 15 shows the experimental setup used. The

non-compressed packaged PHS and wireless LAN
communication control programs were about 2 and 3
Mbytes, respectively. First, by loading the wireless
LAN program and establishing STA-AP communica-
tion, we confirmed the data communication between
two PCs connected to different SDR prototypes. Per-
formance evaluation results of the wireless LAN
mode are described in detail in the next paper in this
issue [16]. Next, the PHS PS communication control
program was download over the air from the OTA
download server. PS software allocation (1.8 Mbytes)
is shown in Fig. 16, which confirms that the PS soft-
ware of PHS was successfully downloaded and soft-
ware integrity was maintained.

After the OTA download had finished successfully,

Fig. 13.   Transmitter spectrum for PHS mode. Fig. 14.   Constellation for PHS mode at FR-PPP.
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the prototype was automatically reconfigured by the
system control program, as shown in Fig. 17. First,
the FPGA configuration control program for FR-PPP
configuration was loaded into a DSP and started by
the system control program. The system control pro-
gram stored FPGA configuration data in the shared
memory, which can be accessed by both the CPU and
DSP programs. The FPGA configuration control pro-
gram transferred FPGA configuration data to the
FIFO (first in first out) buffer from the shared mem-
ory. The FR-PPP controller read data from the FIFO
and installed the data to reconfigure the FPGA. After
the FR-PPP configuration was complete, DSP pro-
grams for the transmitter and receiver were loaded
and executed by the system control program. Finally,
the CPU program for PHS communication protocol
was started. This concluded the system reconfigura-
tion process in the prototype. For the 1.8-MB pro-
gram examined here, reconfiguration took about 10 s.
The components of the measured re-configuration
time are shown in Fig. 18. This time is dominated by

the time taken to install the FPGA software (about 8
s). The reason for this is that each FPGA has about
one million gates, which must all be rewritten. After
the platform switched to PHS mode, we established
CS-PS communication to confirm that the communi-
cation sequence was successfully completed and that
clear voice communication was possible. Figure 19
shows the measured average DSP loads of the PS pro-
totype in each TDMA slot. Average DSP load is
defined as the processing time normalized by the
TDMA slot time. The CS prototype showed almost
the same results. This confirms that all tasks were
performed as designed and that DSP loads never
became excessive. This means that real-time commu-
nication was successfully achieved. In addition, we
note that 4-TDMA processing is possible by using the
currently idle slots. 
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5. Conclusion

We made a wideband (>20 MHz) highly flexible
SDR platform by developing flexible-rate pre-/post-
processors (FR-PPPs). They make it possible to sup-
port wireless LAN systems that use the direct
sequence spread spectrum (DSSS) scheme. We con-
firmed that the FR-PPP functioned as intended in
both wireless LAN and PHS modes. Programs for
both modes were written and tested in an experimen-
tal system. For the PHS mode, measured average
DSP loads confirmed that stable full-duplex real-time
communication was achieved. An over-the-air down-
load protocol based on TCP/IP was designed and
implemented on the prototype, and its operation was
confirmed. The measured system reconfiguration was
11 s.
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