
64 NTT Technical Review

1. Importance of bottleneck analysis of Java
applications

Applications for electronic business (e-Business),
such as online buying and selling on the worldwide
web (WWW), have become more and more compli-
cated. Moreover, they must have sufficiently high
availability to process customers’ orders and their
transactions all the time. However, the application
development cycle from planning to the start of ser-
vice has become shorter and shorter. In particular,
when the development and test phases are short, an
application’s performance will often not be tested
sufficiently because the implementation for the appli-
cation’s required functions accounts for almost all of
the time in these phases. Sometimes an increase in the
number of customers using applications for online
buying and selling, for example, will cause their per-
formance to degrade or will create other problems
that will adversely affect e-Business companies.

To avoid this, we should determine as many as pos-
sible of an application’s performance bottlenecks as
quickly as possible in the development and test phas-
es and fix them before the service starts. Moreover, in
the operation phase, we should observe the tendency
of its performance and determine performance bottle-
necks and fix them before the application’s perfor-

mance degrades much [1].
These days, many e-Business applications are writ-

ten in Java [2]. Java is very useful for developing
large applications of this type because it is not only a
computer language, but also an open, integrated
enterprise infrastructure software system and a plat-
form for network computing. Therefore, bottleneck
analysis of Java applications has become more
important.

2. Conventional methods of bottleneck analysis

The simplest and most common method of bottle-
neck analysis is to insert monitoring code into an
application’s source code. This records various kinds
of information useful for debugging and understand-
ing its behavior during execution. This method is
popularly known as “printf debug” in the application
development and test cycle in the C programming
language and similar programming languages. If you
use methods like “printf debug” to determine an
application’s performance bottlenecks, you must edit
its source code and manually insert monitoring code
at each potential bottleneck. However, if you cannot
guess where the bottlenecks will be, then this opera-
tion can become huge and hence slow.

Another method uses a kind of application called a
“profiler”, which can automate the editing. The pro-
filer records the execution process of the target appli-
cation and analyzes its behavior from the execution
records. Generally, the profiler needs a specific exe-

Tomohide Yamamoto†, Yasuharu Yamada,
and Tetsuya Ogata
Abstract

This article introduces eASSIST, which enables us to monitor and evaluate the performance of each
internal component of an e-Business application consisting of a WWW server application and Java com-
ponents without needing the application’s Java source code. It helps us to determine the application’s
performance bottlenecks easily.

Performance Bottleneck Analysis of Web
Applications with eASSIST

Special Feature: New Measures for Data Center

† NTT Information Sharing Platform Laboratories
Musashino-shi, 180-8585 Japan
E-mail: yamamoto.tomohide@lab.ntt.co.jp

Vol. 2 No. 1 Jan. 2004 65

cution environment, and the target application runs
much more slowly with the profiler than without it.
So it is difficult to determine the application’s bottle-
necks with a profiler during actual operation or dur-
ing the test phase simulating actual operation.

With the conventional methods, besides the prob-
lems mentioned above, performance bottleneck
analysis must be done by application developers who
are familiar with the application’s specifications.

3. Solution for application performance
management and monitoring: eASSIST

To solve these problems, eASSIST*1, developed by
NTT Information Sharing Platform Laboratories,
applies a performance evaluation function and a bot-
tleneck analysis function to each component of Java
applications on the Web application server. With
eASSIST, even testers who are not familiar with the
application’s specifications can determine perfor-
mance bottlenecks quickly and in detail using the var-
ious functions described below. Figure 1 schemati-
cally shows the concept of a service using eASSIST.

3.1 Features of eASSIST
(1) It can measure the execution time and frequen-

cy of each of the Java components and their

methods composing the application with quite a
low overhead.

(2) Any Java component and its method can be
freely selected as a target to observe on eAS-
SIST’s graphical user interface (GUI), and
eASSIST modifies the target components and
methods to insert monitoring code into them
without needing their source code.

(3) It can record the SQL (structured query lan-
guage) queries evaluated in JDBC (Java Data-
base Connectivity).

(4) It can record and display the application host’s
information (CPU, hard disk drive, and memo-
ry consumption rates, etc.).

(5) Its bottleneck analyzer can display all Java
components and their methods that have a long
execution t ime. I t can also display the
sequences in which those components and
methods are called.

(6) In measuring the execution time and frequency
of Java components and their methods, eAS-
SIST can set thresholds for each Java compo-
nent and method. If a monitored value exceeds
the threshold, eASSIST can display this infor-

 Services

CPU

Method execution time
Threshold
Threshold

10:10 10:12 10:14 10:16

Usage of resources

System integrator or operator

Monitoring performance
at the application components

Application

The Internet

JSP: JavaServer pages
EJB: Enterprise JavaBeans

WWW
server

application

JSP Servlet EJB

Application server application
Data-
base

Service provider

eASSIST enables us to monitor and evaluate the performance
of an application in both the development and operation phases.

Development field: Internet data center (iDC) etc.

Measuring
performance

Reporting

Monitoring and evaluating
application’s performance

using eASSIST

The execution times of some
components’ methods are
gradually increasing. The
CPU usage is high, so we
may need to replace some
hardware.

Memory

Fig. 1. Concept of service using eASSIST.

*1 eASSIST is not a registered trademark, but only our code name.

Special Feature

66 NTT Technical Review

mation on its GUI and notify appropriate peo-
ple by email and by SNMP (simple network
management protocol).

The first two features are the most fundamental and
important functions of eASSIST to determine the
application’s performance bottlenecks quickly and
effectively. Feature (1) is designed not only to mea-
sure the execution time and frequency of each Java
component and the component’s method with quite a
low overhead, but also, if eASSIST stops running, to
ensure that the application’s execution is not affected.
This feature is important in the real operation phase.
Features (3), (4), and (5) determine which Java com-
ponents and their methods could be performance bot-
tlenecks. Feature (6) lets eASSIST cooperate with
other monitoring tools using SNMP in the real oper-
ating phase. It is useful for integrated observation of
applications during actual operation.

The eASSIST clearly shows us which components
or which of their methods consumed a lot of execu-
tion time and which were called frequently, after its
bottleneck analyzer has examined eASSIST’s various
logs. Of course, it is not always true that the parts that
are called many times or have a long execution time
are the applications’ bottlenecks, but they are candi-
dates. To identify the bottlenecks, we need more thor-
ough analysis because an application’s performance
degradation can be caused by not only the applica-
tion’s specifications but also by, for example, a lack
of CPU power or memory in the application host. The
eASSIST supports us in choosing candidates quickly
and helps us to identify the serious application bottle-
necks by supplying various kinds of information, for
example host information, to analyze the bottlenecks
in detail.

4. Example of using eASSIST for web
application bottleneck analysis

Let us look at a simple example for the performance
bottleneck analysis of a Web application with eAS-
SIST.

First, investigate the Web application’s execution
code with eAnalyzer, one of eASSIST’s tools. Then,
based on the results, choose which Java components
and methods to monitor and compose a registration
file to use for registering components in eASSIST.
Figure 2 shows the Java components and their meth-
ods listed in eAnalyzer’s GUI. Altenatively, you can
choose Java components and methods to monitor by
the categories defined by J2EE*2, such as JSP,
Servlet, and Session Bean. This option is useful for

monitoring specific kinds of components and meth-
ods in a Web application.

Next, launch the target Web application. Measuring
code for eASSIST can be inserted into the Web appli-
cation’s execution code by eAnalyzer statically dur-
ing the above investigation or dynamically while the
application is running. In both cases, the application’s
source code is not needed. The insertion is done auto-
matically by eAnalyzer.

Then, to measure both the external performance
(for example turn-around time) of the Web applica-
tion using a load testing tool and its internal perfor-
mance (for example each component’s execution
time) by eASSIST, you perform the performance test
with eASSIST and commercially available load test-
ing tools. In measuring an application’s performance
with eASSIST, each component or its method can be
monitored and displayed on eASSIST’s GUI in real
time. Figure 3 shows Java components and their
methods displayed in eASSIST’s GUI. During this
performance test, you may not be conscious of eAS-
SIST, which runs in the background.

After the performance test, you start analyzing the
application’s performance bottlenecks after instruct-
ing the bottleneck analyzer to read the eASSIST’s
logs acquired in the performance test. Then you
check what calls the execution sequence made using

Fig. 2. Java components and their methods listed in
eAnalyzer’s GUI.

*2 J2EE (Java2 platform, Enterprise Edition) is a specification for
enterprise Java applications. JSP (JavaServer Pages), Servlet, Ses-
sion Bean, and EJB (Enterprise JavaBeans) are terms defined by
J2EE.

Special Feature

Vol. 2 No. 1 Jan. 2004 67

the bottleneck analyzer’s function for displaying the
execution sequence in the logs. Figure 4 shows the
top level of the execution sequence on the bottleneck
analyzer GUI. The length of the bar in each row indi-
cates the relative execution time of each component.
Figure 4 indicates that the highlighted Servlet, whose
method name is “doGet”, took the longest time. Fig-
ure 5 shows the subordinate sequences executed in

the method on the bottleneck analyzer’s GUI. Figure
5 indicates that the “getDetails” method in the high-
lighted EJB*2 took the longest time and that it is a
probable candidate for a bottleneck. You can deter-
mine the bottlenecks in a Web application more pre-
cisely in this way, by recursively investigating subor-
dinate Java components that account for most of the
execution time of Java components that could be the

Fig. 3. Java components and their methods displayed in eASSIST’s GUI.

Fig. 4. The top level of the execution sequence in the
bottleneck analyzer’s GUI.

Fig. 5. Subordinate sequences executed in a method
in the bottleneck analyzer’s GUI.

bottlenecks. After determining the bottlenecks, you
examine the source code of the bottleneck candidates
one by one and fix them to eliminate the bottlenecks.

In conclusion, eASSIST helps us to determine Web
application bottlenecks quickly and should enable us
to improve the quality of Web applications quickly,
which is appropriate for a service with high availabil-
ity.

5. Future development

Because eASSIST does not automate the whole
process of performance bottleneck analysis and we
must utilize our experience of bottleneck analysis, we
consider that it is important to accumulate perfor-
mance bottleneck analysis know-how and to incorpo-
rate this into eASSIST as expert knowledge.

References

[1] H. Tanaka, Y. Yamada, A. Gotou, and H. Ishii, “Providing high qual-
ity e-Business applications,” NTT Technical Journal, Vol. 13, No. 2,
pp. 44-48, 2001 (in Japanese).

[2] URL: http://java.sun.com/

Special Feature

68 NTT Technical Review

Tetsuya Ogata
Engineer, Application Platform SE Project,

NTT Information Sharing Platform Laboratories.
He received the B.S. degree in physics from

Yokohama City University, Yokohama in 1994.
He joined NTT in 1994. He is developing various
Java-based tools related to enterprise application
management and Web services.

Yasuharu Yamada
Research Engineer, Application Platform SE

Project, NTT Information Sharing Platform Lab-
oratories.

He received the B.E. and M.E. degrees in elec-
tronic-mechanical engineering from Nagoya
University, Nagoya in 1992 and 1994, respec-
tively, and joined NTT Laboratories in 1994. He
has been developing network management sys-
tems using SNMP and researching TINA-based
network management systems for several years.
He is now developing various Java-based tools
related to enterprise application management and
Web services.

Tomohide Yamamoto
Engineer, Application Platform SE Project,

NTT Information Sharing Platform Laboratories.
He received the B.E. degree in mechano-infor-

matics and M.E. degree in information engineer-
ing from the University of Tokyo, Tokyo in 1993
and 1995, respectively. He joined NTT Labora-
tories in 1995. He had been researching protocols
and developing systems for charging for digital
contents safely and correctly for several years.
He is now developing various Java-based tools
related to enterprise application management and
Web services.

