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1.   Importance of expanding the amplification
bandwidth of EDFAs

Medium- and long-haul optical transmission main-
ly uses signals with wavelengths in the vicinity of
1550 nm because optical fiber has its minimum loss
in this region. The erbium-doped fiber amplifier
(EDFA), which uses Er3+ as the active ion, has been
widely used for 1550-nm signal amplification. The
EDFA features high-gain and low-noise amplifica-
tion in either the 1530–1560-nm wavelength region
within the C band (1530–1565 nm) or the 1570–
1600-nm wavelength region within the L band
(1565–1625 nm). The signal wavelengths available
for practical optical-communication systems have
been limited by the EDFA amplification-wavelength
regions (only 30 nm wide at most). Therefore, if we
can expand the EDFA amplification bandwidth, we
should be able to increase the transmission capacity
by increasing the number of wavelength division
multiplexing (WDM) channels, which will spur the
development of large-scale high-performance pho-
tonic networks. 

One effective way of expanding the amplifier band-
width is to find an appropriate optical fiber material
that best exploits the amplification capability of Er3+

ions; we chose a tellurite glass for this purpose as a
replacement for conventional silica glass fiber. In this
article, we introduce two important types of ampli-
fiers that we have made in this way: a (C+L)-band
Er3+-doped tellurite fiber amplifier (EDTFA) and a
wideband L-band EDTFA. We also present the results
of a transmission experiment that applies an EDTFA
along with a distributed Raman amplifier to a remote-
ly pumped hybrid inline-repeater system.

2.   Bandwidth expansion using tellurite fiber

Extending the EDFA bandwidth requires a large
Er3+ stimulated emission rate across a wide range of
wavelengths. The wavelength dependence of the
stimulated emission rate differs according to the type
of glass material into which the Er3+ ions are doped
because the stimulated emission rate of Er3+ is affect-
ed to some extent by the electric field (ligand field)
generated by the atoms of the glass. It is important to
find a glass material that can extract the latent capac-
ity of Er3+ for wideband amplification. Our measure-
ments of the basic characteristics of various types of
glass material doped with Er3+ showed that tellurite
glass is an effective material for expanding the band-
width [1], [2].

Figure 1 shows the stimulated emission rate (solid
lines) and excited state absorption (ESA) (broken
lines) for tellurite glass and silica glass doped with
Er3+. Tellurite glass has a higher stimulated emission
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rate especially in the 1580–1630 nm wavelength
region, which is advantageous for obtaining high gain
in the L band. ESA, which corresponds to signal loss,
arises at wavelengths longer than 1610 nm with silica
glass but longer than 1620 nm with tellurite glass, so
tellurite glass is also advantageous in terms of ESA,
especially when we expand the amplification band-
width of the EDFA to wavelengths above 1610 nm in
the L band. The basic characteristics described above
show that tellurite glass is a promising optical fiber

material for wideband amplification with an EDFA.

3.   EDTFA providing (C+L)-band amplification 

It is known that the EDFA gain dependence on
wavelength changes if the population inversion state
is altered by pumping. Figure 2(a) shows an example
in the case of an EDTFA. The population inversion
factor α is defined as the Er3+ density in the excited
state divided by the total density of doped Er3+. When
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Fig. 1.   Optical properties of Er3+ ions in tellurite glass.

(a) Gain bandwidth for various population inversion states

EDTF: erbium-doped tellurite fiber

(b) Comparison between EDTFA and EDSFA for
(C+L)-band amplification
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Fig. 2.   (C+L)-band amplification in EDTFA.
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α is in the range 0.8 to 1, we can obtain an EDTFA
with a large gain in the C band. For α = 0.4, we get an
EDTFA with gain in the L band. (This requires a long
Er3+-doped fiber because the gain per unit length is
small.) For α = 0.5–0.6, we obtain an EDTFA with
C+L amplification with gain across both these bands.

Figure 2(b) shows the amplification characteristics
of Er3+-doped tellurite and silica fiber amplifiers
(EDTFA and EDSFA, respectively) calculated from
the basic optical properties, including emission prob-
ability and ESA shown in Fig. 1, when the population
inversion factor and peak gain near 1560 nm were set
to 0.5 and 30 dB, respectively. The EDTFA gain is
relatively flat above 15 dB in the 1580–1610-nm
wavelength range, while the gain of the EDSFA con-
tinues to fall as the wavelength increases in this
range. Referring again to Fig. 1, this difference arises
from the stimulated emission rate for Er3+-doped tel-
lurite glass being higher than that of Er3+-doped sili-
ca glass in the 1580–1630-nm range. These results
demonstrate that tellurite glass is an effective materi-
al for amplifying the broad C+L band.

By applying gain equalization to this (C+L)-band
EDTFA, we developed an amplifier that can be
applied to WDM transmission systems [3]. As shown
in Fig. 3(a), this amplifier had a 3-stage configura-
tion. Because of the extremely large deviation in gain
that occurred during wideband amplification in the
C+L band (Fig. 2(b)), a gain equalizer (GEQ) with a
large loss was needed to flatten the gain. If the ampli-
fier had been configured in two stages, the large GEQ
loss would have caused the noise figure of the ampli-
fier to increase. In contrast, a 3-stage configuration
distributed the GEQ loss, which kept the noise figure

low. The erbium-doped tellurite fiber (EDTF) in the
first stage was forward pumped with a 980-nm laser
diode (LD) and those in the second and third stages
were bidirectionally pumped with 1480-nm LDs
(total pump power: 674 mW, consisting of 116 mW
from the 980-nm LD and 151+158+151+98 mW
from the four 1480-nm LDs).

Figure 3(b) shows experimental results for the
amplification characteristics when the total power of
a WDM signal input to the amplifier was varied
between –15 and –5 dBm. Good characteristics con-
sisting of a flat gain of 24.3 dB, gain deviation of 1.5
dB, noise figure of less than 6 dB, and output power
of 19.5 dBm were obtained over a wide wavelength
range (70.8 nm) from 1532.7 to 1603.5 nm. Here, the
wavelength dependence of the gain was the same
even when we varied the signal input power, which
shows that we can easily control the gain spectrum.

4.   Wideband L-band EDTFA

Figure 4 shows the amplification characteristics of
the L-band EDTFA and L-band EDSFA with maxi-
mum gain of 28 dB and relatively flat gain [4]. The
amplifier performed bidirectional pumping using a
1480-nm LD. The EDTFA had a wider “3-dB-down
gain bandwidth” than the EDSFA: 50 nm (from 1560
to 1610 nm) compared with 38 nm (from 1568 to
1606 nm). The noise figure was less than 6.5 dB and
the output power was 18 dBm. The power conversion
efficiency (= output signal power ÷ pump power) was
nearly the same (about 50%) for both the EDTFA and
EDSFA.

The noise figure rose at longer wavelengths, start-

–5 dBm
–7 dBm
–9 dBm
–11 dBm
–13 dBm
–15 dBm

Signal input (dBm)

30

25

20

15

10

5

0

14

12

10

8

6

4

1540 1560 1580 1600 1620
Wavelength (nm)

(b) Gain characteristics

1480 nm1480 nm1480 nm1480 nm980 nm

(a) Amplifier configuration

Signal SignalEDTF EDTF EDTF

GEQ
#1

GEQ
#2

G
ai

n 
(d

B
)

N
oi

se
 fi

gu
re

 (
dB

)

Fig. 3.   Gain-equalized (C+L)-band EDTFA.
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ing from 1610 nm for the EDSFA and from 1620 nm
for the EDTFA due to ESA effects. Furthermore, for
the EDTFA, the gain remained above 10 dB even at
wavelengths above 1620 nm. These results indicate
that the EDTFA is preferable to the EDSFA when
using wavelengths longer than 1610 nm. In fact,
efforts are being made to shift this EDTFA gain into
a longer-wavelength region from 1583 to 1617 nm. It
has been reported that if WDM transmission were to
be performed in this band through a dispersion-shift-
ed fiber, the four-wave mixing* effect would be less
of a problem than with transmission in the EDSFA
amplification band of 1570–1600 nm in the L band
[5]. This would increase the tolerance in L-band
WDM transmission even when the zero-dispersion
wavelength of the dispersion-shifted fiber fluctuates.

5.   Application of EDTFA to R-EDFA/DRA
hybrid repeater system

We conducted a transmission experiment where we
used the EDTFA along with a distributed Raman
amplifier to make a remotely pumped hybrid inline-

repeater system (R-EDFA/DRA hybrid repeater sys-
tem) [6]. We inserted an erbium-doped tellurite fiber
at a (remote) point along the transmission path in a
system that uses a DRA and operated the fiber as an
EDFA using residual light from the pump light used
for the DRA. Even though this scheme does not
involve a power supply along the transmission path, it
can improve the optical signal-to-noise ratio (OSNR)
(or alternatively increase the tolerable loss per span)
compared with the use of the DRA alone. When an
EDSFA is used as a remotely pumped EDFA (R-
EDFA), the signal band is about 30 nm wide for the C
or L band, but when an EDTFA is used as an R-
EDFA, the signal band is about 80 nm wide (about 2.7
times as wide).

The configuration of an experimental system using
a single-mode fiber as the transmission path is shown
in Fig. 5(a). The figure shows the configuration of
only one repeater (one span) in a multi-repeater trans-
mission. This span consisted of a 180-km transmis-
sion path and an inline amplifier ((C+L)-band ampli-
fier). An R-EDTFA was located 120 km from one
end, and DRA pump light was input at both ends of
the transmission path (1500 nm into the shorter seg-
ment and both 1455 and 1500 nm into the longer seg-
ment). 

The configuration of the R-EDTFA module is
shown in Fig. 5(b). It has two stages: the first stage is
a single pass with forward pumping and the second
stage is a double pass. Here, 1500-nm DRA residual

* Four-wave mixing (FWM) is a phenomenon of nonlinear optics.
In FWM, three signal lights of different wavelengths generate
light of yet another wavelength as a result of nonlinear effects.
This newly generated light greatly degrades the optical signal of
the same wavelength due to cross talk. Therefore, to achieve high-
quality WDM transmission, one must take care to avoid generat-
ing FWM.
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Fig. 4.   Gain characteristics of L-band EDTFA.



light input backward on the transmission path is
introduced into the module and used as a pump light
for the R-EDTFA. The individual gains and the total
gain for the R-EDTFA and DRA are shown in Fig.
5(c) .  The R-EDTFA had a  high gain  in  the
1535–1565-nm range, while the DRA gain peaked at
1610 nm. Combining the two gains resulted in a total
gain of no less than 19 dB in the 1535–1615-nm
range (80-nm bandwidth). Figure 5(d) compares the
R-EDTFA/DRA hybrid amplification output from the
180-km transmission path with DRA-only amplifica-
tion in terms of OSNR for the same pump power. The
addition of the R-EDTFA improved the OSNR by at
least 1.9 dB in the 1535–1615-nm wavelength region.
WDM signals modulated by a 43-Gbit/s carrier-sup-
pressed return-to-zero (CS-RZ) code were transmit-
ted over a five-repeater span (total length: 900 km (=
5 × 180-km spans)).

In conclusion, an EDFA with tellurite fiber
achieves wideband amplification in the C+L and L
bands, which is impossible using a silica-fiber EDFA.
Therefore, we can expect to reduce the transmission
cost per channel by increasing the number of WDM

transmission channels by using this amplifier.
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Fig. 5.   Transmission experiment with R-EDTFA/DRA hybrid system. 
(a) Configuration of transmission experiment (one span). (b) Configuration of R-EDTFA module. 
(c) Gain characteristics of R-EDTFA/DRA hybrid amplification. 
(d) Comparison of OSNR with and without R-EDTFA.
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