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1.   Importance of band expansion 

The development of optical fiber amplifiers cover-
ing new bands in addition to the C band (1530–1565
nm) and L band (1565–1625 nm) can be expected to
expand transmission capacity per optical fiber and
generate new applications. In particular, the O band
(1260–1360 nm) is a zero-dispersion region for sin-
gle-mode fiber that enables the transmission of high-
speed signals without dispersion effects. This band is
currently finding widespread use in access networks
and local area networks. In addition, the S band
(1460–1530 nm) can be combined with the C and L
bands to increase significantly the number of chan-
nels and transmission capacity of wavelength divi-
sion multiplexing (WDM) transmission in medium-
and long-haul photonic networks.

NTT Photonics Laboratories has developed O-band
amplification technology using a praseodymium(Pr3+)-
doped fiber amplifier (PDFA) [1]-[3] and S-band
amplification technology using a thulium(Tm3+)-
doped fiber amplifier (TDFA) [4], [5] or erbium(Er3+)-
doped fiber amplifier (EDFA) [6]. We are also devel-

oping (S+C)-band amplification technology by con-
necting this Tm3+-doped fiber amplifier in series with
a C-band EDFA. And using this technology, we are
developing a fiber amplifier that can be applied to a
coarse wavelength division multiplexing (CWDM)
transmission system, which is soon to be introduced
as a low-cost transmission system [7].

2.   O-band optical fiber amplifier

The energy levels of the praseodymium ion (Pr3+)
used for O-band amplification are shown in Fig. 1(a).
Here, O-band optical amplification uses the 1G4→3H5

stimulated emission transition. However, the exis-
tence of another level (3F4) at 3000 cm–1 below the
upper level (1G4) of this transition means that an
excited ion may resonate with lattice vibration in
ordinary silica fiber doped with Pr3+, resulting in
thermal relaxation without emission (non-radiative
transition). To achieve efficient optical amplification
here, the glass used as the optical fiber material must
make it difficult for non-radiative transitions to occur.
For this purpose, we developed indium-fluoride glass
[1].

The configuration of an optical fiber amplifier in
which the core of the indium-fluoride fiber is doped
with Pr3+ is shown Fig. 1(b). Its amplification char-
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acteristics are shown in Fig. 1(c). Using a 980-nm
laser diode (LD) as a pump source, this amplifier
achieved good amplification characteristics, namely,
a gain of 20 dB or more, an output of 20 dBm, and a
noise figure of 5.5 dB, in the 1276–1310 nm wave-
length region [2].

We also investigated ways of reducing the amplifi-
er’s size. Figure 2(a) shows a compact PDFA that we
developed with dimensions of 70 × 40 × 15 mm [3].
It contains 15 m of Pr3+-doped indium-fluoride fiber
wound on a bobbin. To make the amplifier small, one

must reduce the bobbin diameter, but this increases
the bending stress applied to the fiber, which shortens
its lifetime. Fluoride fiber has less mechanical
strength than silica fiber, and the bobbin diameter can
be no smaller than 75 mm to guarantee a fiber lifetime
of 25 years with a failure probability of 10–6. To coun-
teract this increase in bending stress on the fluoride
fiber, we designed a new fiber with a smaller diame-
ter of 80 µm instead of 125 µm for the conventional
fiber. As a result, we maintained the 25-year guaran-
teed lifetime with failure probability of 10–6 using a
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Fig. 1(a).   Energy diagram of Pr3+. Fig. 1(c).   Amplification characteristics of PDFA with our
developed fluoride fiber.

Fig. 1(b).   Configuration of PDFA with our developed fluoride fiber.
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bobbin diameter of 31 mm, which is less that half the
conventional diameter (Fig. 2(b)). This compact
amplifier achieves an output of 13 dBm and a gain of
15 dB or more in the 1287–1318 nm wavelength
region. Besides replacing conventional amplifiers,
we expect this PDFA to be used for new applications
such as post-amplifiers in transmitters and channel
amplifiers for optical add/drop multiplexers
(OADMs).

3.   S-band optical fiber amplifiers

S-band rare-earth-doped fiber amplifiers are made
using two approaches:

1) Using a thulium(Tm3+)-doped fiber (TDF) as
the amplification medium  

2) Using an S-band EDFA, which is a convention-
al EDFA with its amplification region expand-
ed into the S band [4].

3.1   TDFA
The energy level diagram of the Tm3+ ion is shown

in Fig. 3(a). S-band amplification makes use of the
stimulated emission between the 3H4 and 3F4 levels.
We also use fluoride glass to achieve this amplifica-
tion more efficiently. (Although amplification is pos-
sible with silica glass, its efficiency is about one-third
that with fluoride glass.) Here, the 3H4 upper level has

a shorter fluorescence lifetime than the 3F4 lower
level. As a result, a population inversion forms by a
1st excitation process from the 3H6 ground state to the
3F4 lower level and by a 2nd excitation process that
excites ions accumulated at the 3F4 lower level to the
3H4 upper level. In the TDF gain spectrum, a gain
peak appears at 1460 nm in a high population-inver-
sion state, but for a population-inversion state of
about 40%, we can achieve an amplification band
with a peak at the center of the S band, as shown in
Fig. 3(b). To form such a relatively low population
inversion of 40%, we developed a method for doping
the fiber with a high concentration of Tm3+ ions [5].
The addition of about 6000 ppm of Tm3+ ions short-
ens the distance between the ions and generates an
interaction (cross relaxation) between them thereby
increasing the number of ions excited to the 3F4 lower
level. The amplification characteristics of a TDFA
made using this method are shown in Fig. 3(c). By
using a gain equalizer (GEQ), we achieved a high
gain of 26 dB, a gain excursion of 0.6 dB, and a noise
figure of 6 dB or less in the 1480–1510-nm wave-
length region, demonstrating excellent amplification
characteristics. Here, 1400-nm semiconductor laser
diodes were used for both excitation processes.

When this amplifier is used in an actual system, it
must be controlled so that the gain of each signal
wavelength is fixed; that is, any gain fluctuation
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caused by channel and temperature fluctuations must
be suppressed. Because only two levels contribute to
amplification in an EDFA, such control can be
achieved by monitoring the signal of only one wave-
length and adjusting the pump power so that the gain
of that signal is fixed (green arrow in Fig. 4(a)). In
contrast, three levels contribute to amplification in a
TDFA, which prevents the gain from being held con-
stant by a control technique as simple as that used
with the EDFA. In response to this problem, we
decided to keep the pump power constant while con-
trolling the power of a built-in light source (which
was dedicated to providing a monitor signal) so as to
keep the gain of that signal constant (blue arrow in
Fig. 4(b)). The end result was a control system as
simple as that used for the EDFA [6]. Using this tech-
nique, we achieved a gain excursion of less than 0.6
dB for a total input signal power change correspond-
ing to the change from 100 channels to 1 channel.
This system also has a simultaneous compensation
function to handle changes in temperature. This func-
tion enabled us to obtain good gain deviation at 0.8
dB even for a temperature jump from 10 to 60°C in
addition to the channel fluctuation (Fig. 4(c)).

3.2   S-band EDFA
The Er3+ ion also has stimulated emission in the S

band, and gain can be obtained by forming a high
population inversion. However, the gain in the C band
is higher than that in the S band, and the effects of

laser oscillation and large amplified spontaneous
emission (ASE) that occur in the C band make for a
low population inversion. As a result, it is generally
difficult to obtain a large gain in the S band. To avoid
the effects of this laser oscillation and ASE in the C
band, we employed distributed filters that provide
loss in the C band throughout the amplifier. This led
to high gain in the S band. Figure 5 shows the con-
figuration of this S-band amplifier and its good
amplification characteristics. A gain of more than 21
dB and a noise figure of less than 6.7 dB were
obtained in the 1486–1518-nm wavelength region
[7].

4.   (S+C)-band amplification and a CWDM
amplifier

Eight-channel CWDM transmission systems are
starting to be introduced, but their transmission scale
is determined by the span loss. By using optical
amplifiers, we can relax this constraint and expand
the applicable range of a CWDM system. In CWDM
transmission, optical amplification must operate over
a wide wavelength region of 1470–1610 nm.
Although wideband erbium-doped tellurite fiber
amplifier (EDTFA) technology (described in the pre-
vious article) can cover amplification in the long-
wavelength four-channel region (1550–1610 nm), a
TDFA by itself is insufficient for the short-wave-
length four-channel region (1470–1530 nm) because
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its upper amplification limit is 1510 nm. To cover this
region, we developed (S+C)-band amplification tech-
nology by connecting a TDFA with an S-band EDFA
in series (TDFA-EDFA hybrid amplification) [8].
This approach can provide seamless amplification
over the S and C bands.

The configuration of our amplifier for CWDM
transmission is shown in Fig. 6(a). The input CWDM
signals are divided into those for the short-wave-
length four-channel region (1470–1530 nm) and
those for the long-wavelength four-channel region
(1550–1610 nm). The signals on the short-wave-
length side are amplified by the TDFA-EDFA hybrid
amplifier and those on the long-wavelength side by
the wideband EDTFA. After amplification, these sig-
nals are recombined and output.

The amplification characteristics before gain equal-
ization and the loss characteristics of the GEQ for
both amplifier sections are shown in Fig. 6(b). The
hybrid amplifier section achieves a high gain in the
wide (80-nm) region of 1460–1540 nm by combining
the TDFA and EDFA gains, and the EDTFA section
achieves a high gain in the 1540–1620-nm wave-
length region. A large gain equalization of more than
30 dB is needed for the EDTFA section. To suppress
any rise in the noise figure caused by this gain equal-
ization, we divided the erbium-doped tellurite fiber
(EDTF) into three sections and inserted GEQs
between them (Fig. 6(a)). 

The amplification characteristics of a CWDM
amplifier with this configuration are shown in Fig.
6(c). A gain of more than 20 dB and a noise figure of
less than 8 dB are achieved for –20 dBm/ch × 8 chan-
nels of CWDM signal input. We have used this ampli-
fier as an inline amplifier and confirmed that CWDM
signals can be transmitted through 100 km × 2 spans
of single-mode fiber [8].

5.   Future developments

The effective use of the wideband transmission
characteristics possessed by transmission optical
fiber (≤0.4-dB/km low-loss equalization band: 1250–
1680 nm) will enable the development of large-scale,
broadband photonic networks and optical communi-
cation systems. In upcoming research, we plan to
expand the amplification bandwidth even further into
wavelength regions not covered by current rare-earth-
doped fiber amplifiers to support the development of
high-performance large-scale optical communication
networks. 
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Fig. 5(b).   Gain and noise figure spectra of S-band EDFA.
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Fig. 6.   Amplification characteristics (b) without GEQ and (c) with GEQ.
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