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1.   Introduction

The coming of high-speed, broadband communica-
tions is creating a strong demand for networks that
can transmit large volumes of information at high
speed and systems that can perform high-throughput
information processing. To this end, it is important to
promote node “opticalization” (i.e., the replacement
of electrical processing by all-optical processing),

rather than simply that of links as in the past, and to
eliminate the costs incurred by optical/electrical
(O/E) and electrical/optical (E/O) conversion and the
data-transfer bottlenecks caused by electrical pro-
cessing.

Figure 1 shows how optical networks are expected
to evolve and the optical devices that will be needed.
To expand the capacity of conventional point-to-point
multi-wavelength optical transmission, studies are
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Fig. 1.   Evolution of optical networks and related optical devices.
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progressing on the development of an advanced opti-
cal network architecture using optical add/drop mul-
tiplexers (OADMs), optical cross connects (OXCs),
and photonic routers. These new formats will
increase the demand for new and advanced optical
processing functions above and beyond the conven-
tional splitting and combining of wavelengths. They
will include add/drop multiplexing, cross-connec-
tion, adaptive compensation (e.g., for dispersion and
gain fluctuation), label processing for label recogni-
tion and switching, and optical buffering.

Silica-based planar lightwave circuit (PLC) wave-
guides can perform optical phase control and spa-
tial/temporal multiple beam interference in a stable
and low-loss manner, unlike other waveguide materi-
als. They can be used to achieve complicated circuit
configurations with the waveguide lengths required
by optical signal processing functions. In addition,
functions like optical detection/emission, modula-
tion, amplification, and wavelength conversion can
be provided as needed through the hybrid integration
of active elements such as ferrodielectric and semi-
conductor devices. In short, a variety of optical
devices can be developed by exploiting the features

of both active and passive devices.
In this article, we introduce a label recognition

device, an optical code division multiple access
(CDMA) device, and a pulse waveform-shaping
device that make use of the superior characteristics
and diverse functions of PLC technology. These
devices are being researched and developed for appli-
cation to next-generation networks.

2.   Label recognition device

Technology that can process address labels of high-
speed packets in the optical domain and promote the
opticalization of nodes is becoming increasingly
important in achieving ultrahigh-speed packet rout-
ing.

Figure 2 shows a label recognition device consist-
ing of a PLC and a high-speed semiconductor gate
device. This device first splits an input serial-label
signal into four signals and gives each of these signals
a different delay corresponding to an integer multiple
of the bit interval. After adjusting the phase of each
signal using a thermo-optic phase shifter, it then sub-
jects each signal to amplitude weighting according to
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Fig. 2.   Label recognition device.
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its arm number using a variable optical attenuator
(VOA) of the Mach-Zehnder interferometer (MZI)
type. Next, the device combines the signals by means
of interference. Finally, the device uses a time gate to
extract from this combined signal only the serial/par-
allel converted part of the source signal. As a result of
these operations, the output signal changes in an ana-
log way in accordance with pattern changes in the
input digital address signal, i.e., by a digital/analog
(D/A) conversion process. The output here does not
depend on the signal transmission speed, which
means that label recognition that is not limited by
electrical processing speeds can be achieved by
determining the value of that output.

We performed a label-recognition experiment using
a 10-Gbit/s, return-to-zero (RZ) 4-bit-label signal and
found that the device operated effectively [1]. To take
this device to the next step where it can recognize
label signals of even more bits, future research must
look at ways of raising device performance.

3.   Optical CDMA device

We are also researching and developing ways of
making more effective use of the optical-signal band
by exploiting the features of optical coding technolo-
gy. The configuration of an optical CDMA device
(encoder/decoder) fabricated using PLC technology
is shown in Fig. 3. This device encodes an optical
signal by using the delay incurred in optical circuits
so that multiple access can be achieved not by time or
wavelength as in other transmission schemes but by

code. In this configuration, an array of variable delay
lines in a lattice-type configuration featuring cas-
cade-connected MZIs is placed between arrayed-
waveguide gratings (AWGs) having a wavelength
splitting and combining function. These variable
delay lines are used to give each wavelength a differ-
ent delay and thereby spread the optical signal in both
the time and wavelength domains, enabling two-
dimensional coding. This provides a greater number
of codes than just one-dimensional coding by means
of either time or wavelength, so it enables more flex-
ible signal spreading. Referring to the figure, each
variable-delay-line section features asymmetrical
MZIs that successively double the optical path length
and symmetrical MZI switches that are placed
between asymmetrical MZIs. This minimum config-
uration can achieve delays from 0 to (2i-1) ∆L (i:
number of asymmetrical MZIs) in units of ∆L. Since
delays may be set here in a semi-fixed manner, the
switching time of the thermo-optic phase shifters (of
the millisecond order) does not present a problem.
Placing this device on the transmitter and receiver
sides of a communication system as an encoder and
decoder, respectively, enables reproduction on the
receive side of only those signals for which the
encoded and decoded pattern agrees (for which the
total delay of each wavelength agrees). Thus, in addi-
tion to enabling efficient spectrum usage, this device
can be expected to provide a variety of useful func-
tions such as asynchronous connections, random
access by coding without the use of optical switches,
and self routing.
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Fig. 3.   Optical CDMA device.
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Using a 10-Gbit/s RZ signal, we measured auto-
correlation (for code matching condition between
transmitter and receiver) and cross-correlation (for
code unmatching condition between transmitter and
receiver) characteristics and obtained a good extinc-
tion ratio (12 dB) between these characteristics as
intended by the design. We also performed an actual
transmission experiment that confirmed the effective-
ness of this device [2].

Important issues in future research are increasing
the number of codes to support a large-scale system
with many users and developing a simple configura-
tion that can be applied to a subscriber system.

4.   Waveform-shaping device

High-speed optical communications of 40 Gbit/s
and higher per wavelength requires optical-signal
processing functions for shaping the waveform such
as signal chirp compensation and gate-oriented rec-
tangular-pulse generation. However, it has been diffi-
cult to directly control the output waveform of a pulse
light source by electrical means. The spectrum shap-
ing method, on the other hand, can control waveforms
by directly adjusting the amplitude and phase of
repeating pulse-spectrum components in the optical
domain. This is especially advantageous because it

can achieve waveform shaping using only a passive
device without the use of high-speed optical modula-
tors or optical non-linear effects.

The operating principle and configuration of an
integrated waveform-shaping device are shown in
Fig. 4. The device features a monolithically integrat-
ed array of amplitude-and-phase adjustment sections,
each comprising a VOA and thermo-optic phase
shifters, which is located between two AWGs for
wavelength splitting/combining. This configuration
makes it possible to independently adjust the ampli-
tude and phase of multiple frequency components
with high accuracy. A good VOA extinction ratio and
amplitude setting accuracy of 30 dB and 0.1 dB,
respectively, has been obtained with this device.

To evaluate the operation of this device, we tried
generating rectangular pulses for gate signals and
other uses by giving the electrical-field spectrum
component the shape of a sinc function. We were suc-
cessful in generating rectangular pulses with a fre-
quency of 40 GHz and a pulse width that could be
varied in the range from 4.4 to 10.5 ps [3].

In addition to the field of communications, this
device shows promise for use in other fields such as
signal generation for measurement purposes. As with
the other devices introduced in this article, we aim to
improve the performance of this device and explore
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Fig. 4.   Waveform-shaping device.



its use in opening up new application fields.

5.   Conclusion

The PLC-based optical signal processing devices
introduced here are expected to play a vital role in
creating the next-generation high-speed optical net-
works. We plan to raise the performance of each of
these devices knowing that system requirements will
become even more severe in the years to come.
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