
Vol. 3 No. 10 Oct. 2005 43

1. Importance of network operations

An IP (Internet protocol) network consists of vari-
ous types of network elements (NEs) such as routers,
switches, and servers. With the recent growth of net-
works and services, network operators and service
system developers have had to handle an increasing
number and variety of NEs, and their everyday work
has become very complicated. For IP-based network
services, the technology is changing especially
quickly, with new services appearing all the time
while the life cycles of individual services tend to
become shorter and shorter. As a result, operators and
developers are being required to make ever-increas-
ing efforts.

Without any doubt, the importance of the roles
played by the operations support system (OpS) and
network management system (NMS) in providing
network services will continue to increase in the
future. In particular, it is essential to support the
establishment of large-scale networks, since any
delay in introducing a new service is likely to have an
adverse effect on business profits. Moreover, OpSs
and NMSs enable us to provide services without cus-
tomers feeling any stress from a slow response by the
operator. They enable a quick response to a cus-

tomer’s service order.

2. Operations issues

2.1 Service operations issues
In a large-scale network, even modifying the net-

work configurations can involve a lot of work. IP net-
works are configured from various types of NEs
developed by multiple vendors, even for basic com-
ponents such as routers. The network operator and an
NMS must be able to handle all these different equip-
ment types. The operator’s job includes various tasks
such as setting diverse service parameters, booting up
equipment, updating operating systems, and collect-
ing error logs. Although these might seem to be sim-
ple tasks at first glance, they require different knowl-
edge and techniques about the interface specifica-
tions and complex operating procedures of each NE,
and there is no excuse for making mistakes while ser-
vices are being provided via the network. A number
of tools that support NE setting operations have
appeared recently. Device Authority Suite [1] has
functions that record the commands sent by operators
on a command line interface (CLI) and the responses
obtained from the NE. Since these exchanges are
recorded in the format of a scripting language, the
operator can easily adapt them to individual circum-
stances if the differences are only minor, which
allows them to be re-used more often and supports the
automated processing of similar settings. However,

Yu Miyoshi† and Tatsuyuki Kimura
Abstract

Operating a network while new services are being continuously introduced is a complex and difficult
task. This article introduces interface blending/diagnosis technology developed in NTT Laboratories. It
consists of 1) a blending method that automatically generates network management system (NMS) inter-
face adapters for different vendors from commands and responses transmitted and received between an
NMS and a network element (NE) and 2) a diagnosis method that examines blended interfaces with an
actual NE and verifies the results. This technology alleviates the effort of network operations by
automating the development of functions that operators use to set up NEs and the NMS.

Interface Blending/Diagnosis Technology for
Automatically Generating an Interface Adapter

Special Feature

† NTT Network Service Systems Laboratories
Musashino-shi, 180-8585 Japan
E-mail: miyoshi.yu@lab.ntt.co.jp

Special Feature

44 NTT Technical Review

operators must still perform separate setup operations
for NEs provided by different vendors because of
their different interface specifications. Moreover,
they must still address the problems of how to adapt
quickly to the introduction of new NEs or modified
interface specifications and how to continue opera-
tions smoothly.

2.2 System interface development issues
An NMS that supports the running of a network

monitors the entire network including multiple types
of equipment. This includes monitoring not only each
individual item of equipment, but also the traffic path,
and the impact of equipment failures. The commer-
cial products described in references [2] and [3] are
well known in this category. At NTT Laboratories,
we have also been developing technology for moni-
toring networks over multiple layers [4] and ascer-
taining the paths used by specific services and the
detour paths [5].

SNMP (simple network management protocol) is a
well-known protocol for gathering information from
NEs. Since it is a standard protocol in many types of
equipment, it is widely used. However, it is not possi-
ble to monitor services that use new technology that
has yet to be fully implemented in the management
information base (MIB) whose contents are acquired
via SNMP or to use parameter setting in the equip-
ment because of NE implementation and security
problems. Therefore, the use of a CLI to enter settings
and acquire detailed information is currently the most
popular approach. In this case, the NMS is equipped
with an interface that transmits commands to the
equipment, but even for settings with identical mean-
ings, it is necessary to provide different processing
statements for NEs from different vendors. These

processing functions are called “interface adapters”
and they are usually developed individually (Fig. 1).

The interface adapter is made using a script lan-
guage that can easily be augmented as opposed to the
NMS itself, which is implemented in a programming
language such as Java. This is because it is necessary
to use interactive processing whereby the response to
a transmitted command is used to select the subse-
quent processing and because processing statements
are expected to be frequently updated to keep up with
ongoing changes to NE specifications. Well-known
script languages that can be used for this purpose
include Perl, JavaScript, Python, and Expect.

However, the rapid introduction of developed inter-
face adapters has a problem. For example, in situa-
tions where a new NE is released, it is preferable to
match up the specifications by developing an inter-
face adapter at the same time as the NMS (Fig. 2).
But matching up is a difficult task when the NE and
the NMS interface adapter have been developed in
parallel. Even if it is assumed that the specifications
can be matched up, it is still necessary to perform ver-
ification trials on the actual equipment. If a connec-
tion failure occurs during these trials, even more time
must be spent on the specification design and inter-
face adapter coding.

With regard to the methods used to develop system
functions, such as interface adapters where results are
needed quickly, attempts are being made to automate
their creation by applying MDA (model driven archi-
tecture), which is being studied by the OMG (object
management group) [6]. However, since this method
requires that the UML (unified modeling language)
specifications of the functions are declared as mod-
els, it is necessary to support the creation of models.
Furthermore, instead of creating functions from

External systems and operators

Application programming
interface (API)

Network
management
system

Application function

Adapter Adapter Adapter Script statements

Fig. 1. Position of interface adapters.

Special Feature

Vol. 3 No. 10 Oct. 2005 45

scratch with models, it may be necessary to consider
enhancing efficiency by re-using existing adapters.

3. Interface blending/diagnosis technology

The interface blending/diagnosis technology auto-
mates part of the work involved in operator settings
input and interface adapter development with the aim
of reducing the workload (especially in the complex-
ity of dealing with settings for different vendors and
with frequent specification changes), thereby con-
tributing to the rapid introduction and smooth opera-
tion of network services. If the specification design
and development of setting functions and adapters
can be automated, then work can be performed direct-
ly on NE and NMS connection trials and operations,
and it should be possible to greatly reduce the effort
on operators and developers. This technology will
also be able to check problems such as misconfigura-
tions caused by human error. Specifically, we are
considering providing a system with “blending” and
“diagnosis” methods that automatically bridge the
differences between the interfaces of different ven-
dors when performing similar processes (Fig. 3).

Our system extracts information such as command
strings from the operator’s previous setting history or
from an interface adapter that has already been
installed and stores it in a database after adding attrib-
utes such as processing sequences. After that, this
existing information is combined to create the com-
mands to send to another target NE. It is possible to
operate in this way because many commands include
words with similar meanings even though the NEs
come from different vendors and have different spec-

ifications. Our system utilizes these characteristics.
Moreover, using knowledge based on the interface
specifications defined by each vendor makes it more
likely that commands and interface adapters can be
created automatically. This method is called “blend-
ing”.

However, the command strings and interface
adapter script statements generated by blending are
not used without alteration. If a large amount of accu-
rate knowledge is available then the probability of
successfully creating an accurate adapter also
increases, but this cannot be guaranteed and it may be
inadvisable to use these statements without any veri-
fication. Therefore, the interface diagnosis system is
equipped with methods that use the adapter generat-
ed by the blending method to perform connection
tests on the NE in question. We call this method
“diagnosis” because it discovers the correct solution
by connecting the system to the actual equipment.
The adapter is automatically configured based on the
responses obtained by this diagnosis. We are consid-
ering generating the adapter in script form (we are
currently using Expect), so that it can be easily mod-
ified by operators and developers. Furthermore, it can
be run as part of an NMS, or as a standalone applica-
tion on an external system.

4. Detailed design

This section presents details of the design that we
implemented in a system for an interface blending
and diagnosis method (Fig. 4). There are four com-
ponents, which are described in sections 4.1. to 4.4.

NMS development NE development

Redesign
Redesign

Confirmation of
specifications

Development of
NMS functions

Success

Trial connection
with NE

Start of
service operation

Fig. 2. NMS and NE development process.

Special Feature

46 NTT Technical Review

4.1 Analysis component
First, we describe the analysis component of exist-

ing adapters entered by a developer. We found that all
adaptors have a structure for connecting to a target
NE by telnet, transmitting commands, obtaining data
from responses, and disconnecting from it. They also
have a structure that can be divided into the following
three parts (Fig. 5(a)).

1) The declaration describes variable declarations
and argument definitions.

2) The connection describes the process of con-
necting with an NE such as connecting, discon-
necting, and entering a username or password.

3) The processing describes interactive applica-
tions such as command transmission and
response handling.

Moreover, we found that the connection and pro-
cessing parts can be divided more minutely and that
the description of a command transmission can be
paired up with the response. Therefore, we call the
pair of descriptions (command and response) a “con-
versation” and define a “conversation” as the small-
est unit that expresses an NMS adapter function (Fig.
5(b)).

The analysis component divides an input adapter
into three parts, which are subdivided into conversa-

Existing
adapters

Network
management

system

Personal computer

Adapter for
the target NE

Target NE
(trial)

Target NE

Script
modularization

Test engineer Operator

Automation

Flexible
improvement of

work flow

Automation &
simplification of

routing work

Simple development
of NE adapters for
different vendors

Creation of
diagnosis
adapter

Fig. 3. Generation of adapters by interface blending and diagnosis technology.

Vendor
characteristicsExisting

adapters

Adapter for
the target NEAnalysis Blending Diagnosis Completion

Interface diagnosis system

Fig. 4. Components of interface diagnosis system.

Special Feature

Vol. 3 No. 10 Oct. 2005 47

tions (Fig. 6). In addition, it
stores dependency and sequence
information between conversa-
tions as attributes.

4.2 Blending component
The blending component gen-

erates an adapter for testing a tar-
get NE (Fig. 6). In a survey of
interface adapters, we found sim-
ilar meanings in many command
strings. The interface specifica-
tions are not compatible between
different NEs, but NE interfaces
are implemented considering
operator usability and the words
that the operator can use in spec-
ifications. Therefore, we assume
a system can obtain responses
that enable it to generate correct
adapters for a target NE if it
queries the NE with existing or
similar commands of other ven-
dors’ NEs. The blending compo-
nent generates trial adapters by
recalibrating the existing com-
mands. We can use various meth-
ods to generate new trial com-
mands, such as the following cal-
ibrations rules.

In addition, an adapter has
description parts that do not
depend on the meaning of NE-
vendor-specific commands. For
example, a connection part for
log-in is the same as long as the
vendor NE is the same. There-
fore, we thought that the efficien-
cy of generating an adapter auto-
matically would increase if a sys-
tem recycles patterns pertinent to
the vendor NE. And we imple-

#! /usr/local/bin/expect -
log_user 0
set timeout 5
set loginIP [lindex $argv 0]
set targetIfName [lindex $argv 1]
set user [lindex $argv 2]
set loginPW [lindex $argv 3]

append command "show ipv6 mld"
spawn telnet $loginIP

expect {
 -re "Unknown host" { send_user "# Unknown host #"; exit -1; }
 -re "login: " { send "$user¥n"; }
 timeout { send_user "# $loginIP Login Timeout #¥n; exit -1 }
}
expect {
 -re "Password:" { send "$loginPW¥n"; exp_continue }
 -re "(Error :).*" { send_user "# $loginIP Login Timeout #¥n"; exit -1 }
 -re "#" {}
}
send "terminal pager off¥n"
expect {
 -re "(Error :).*" { send_user "# Command error #"; exit -1 }
 timeout { send_user "# Timeout error #"; exit -1 } -re "#" {}
}
send "$command¥n"
expect {
 -indices -re “($IPv6address)¥[^¥n¥.]*¥n¥ +($IPv6address)”
 { send_user "$expect_out(2,string),$expect_out(9,string)¥n"}
 -re "(Error :).*" { send_user "# Command error #"; exit -1 }
 timeout { send_user "# Timeout #"; exit -1 } -re "#" {}
}
send "exit¥n"
close

(a) Example of adapter divided into three parts.

Connection

Processing

Connection

Declaration

Fig. 5. Example of adapter description.

#! /usr/local/bin/expect -
log_user 0
set timeout 5
set loginIP [lindex $argv 0]
set targetIfName [lindex $argv 1]
set user [lindex $argv 2]
set loginPW [lindex $argv 3]

append command "show ipv6 mld"
spawn telnet $loginIP

expect {
 -re "Unknown host" { send_user "# Unknown host #"; exit -1; }
 -re "login: " { send "$user¥n"; }
 timeout { send_user "# $loginIP Login Timeout #¥n; exit -1 }
}
expect {
 -re "Password:" { send "$loginPW¥n"; exp_continue }
 -re "(Error :).*" { send_user "# $loginIP Login Timeout #¥n"; exit -1 }
 -re "#" {}
}
send "terminal pager off¥n"
expect {
 -re "(Error :).*" { send_user "# Command error #"; exit -1 }
 timeout { send_user "# Timeout error #"; exit -1 } -re "#" {}
}
send "$command¥n"
expect {
 -indices -re "($IPaddress)¥[^¥n¥.]*¥n¥ +($IPaddress)”
 { send_user "$expect_out(2,string),$expect_out(9,string)¥n"}
 -re "(Error :).*" { send_user "# Command error #"; exit -1 }
 timeout { send_user "# Timeout #"; exit -1 } -re "#" {}
}
send "exit¥n"
closeConversation

Conversation

Conversation

Conversation

Conversation

(b) Example of adapter divided into “conversations”.

• Using just existing com-
mands of other adapters

• Modifying existing com-
mands . (e .g . , chang ing
“show ip ospf interface” ➔
“show ip interface ospf ”)

• Replacing defined equiva-
lent words. (e.g., changing
“show ipv6 ospf interface” ➔
“show inet6 ospf3 interface”)

Special Feature

48 NTT Technical Review

mented functions to store the vendor’s reserved
words in this component. If the target NE is supplied
by a known vendor for our system, the vendor pat-
terns are used prior to other blending methods in this
component.

4.3 Diagnosis component
The behavior of the diagnosis component is shown

in Fig. 7. Our system must search for effective infor-
mation from replies of a target NE by transmitting
many commands. To judge if this is effective, model
answers are necessary. At the beginning of the
process, the diagnosis component identifies the ven-
dor of the target NE after the system has connected to
it, and it identifies the vendor pattern automatically.
The component acquires model answers from an
existing NE automatically. It adds a conversation that
records responses to an existing adapter. When the
system connects with an existing NE, responses are
recorded and defined as model answers. Next, the
component searches for correct answers for a target
NE by transmitting many commands generated by
the blending component. The diagnosis component
decides that an NMS can use the commands if the
responses from the target NE match the model

answers, and it incorporates the character string in an
adapter for a target NE. Next, the diagnosis compo-
nent transmits commands of conversations which are
generated by the blending component as a test and
gets real responses. It compares the responses with
model answers, discovers a correct answer, and
incorporates the test command into the adapter. In
addition, this diagnosis work should be processed in
a test network because backup and rollback process-
ing are necessary.

4.4 Completion component
An adapter is completely generated once a comple-

tion component has added descriptions for error pro-
cessing. However, we think it is necessary not only to
establish technologies for increasing the success rate
of automation, but also to strive to implement practi-
cal functions such as a system that repairs adapter
errors easily through the intervention of an operator.
Therefore, the system should have a graphical user
interface (GUI) for an operator to add commands to
the database if the diagnosis component could not be
found. Our system will be made into a full solution by
adding functions for correcting and complementing
the adaptors easily.

Declaration
A

Connection
A

Processing
A

Conversation
A3

Conversation
A2

Conversation
A1

Conversation
B3

Conversation
B2

Conversation
B1

Declaration
B

Connection
B

Script A

Script B

Processing
B

Diagnosis
conversation
1 (A1 + B1)

Connection
(from vendor
characteristics)

Adapter
for

diagnosis

Declaration
A + B

Diagnosis
conversation
2 (A2 + B2)

Diagnosis
conversation
3 (A3 + B3)

Vendor
characteristics

Vendor
characteristics

Vendor
characteristics

Absorb redundant
variable definitions

Merge
similar commands

Divide them
by meaning

Replace
with vendor

pattern

Analysis Blending

Fig. 6. Behavior of an analysis component and a blending component.

Special Feature

Vol. 3 No. 10 Oct. 2005 49

5. Verification trials

5.1 Conditions
We performed verification trials on a prototype sys-

tem (Fig. 8). In this trial, we assumed that an NMS
developer was implementing an adaptor for a new
target NE and that the NMS already had adapters for
other NEs. We investigated how many correct
answers our system could discover. For this investi-
gation, we built a prototype of the above components.
As existing adapters, we used adapters of a network
management system that we had developed previous-
ly [5]. All adapters were described in Expect. They
had commands for connecting to a target router, get-
ting data, and disconnecting from the NE. We pre-
pared three target NEs from different vendors and
tested whether our system could generate three new
adapters for each target NE. Therefore, we tested the
automatic generation of nine adapters. It follows that
the system did not know the correct commands of
adapters of the target NEs. We prepared active NEs in

a test network and the system queried them.

5.2 Results
First, we tested the diagnosis method using only the

above-mentioned three calibration rules (4.3) imple-
mented in the blending component. We were able to
find 53% of the correct commands. This shows that
the majority of commands resemble each other in the
CLI of different vendor NEs. A developer may halve
the effort of implementing a new adapter if our sys-
tem can get 53% of the answers correct. Afterwards,
we tried implementing new rules to automatically
generate the commands that we were not able to con-
firm. As a result of adding new rules and having test-
ed the diagnosis method again, our blending method
was able to generate commands including those used
for all 9 adapters and 44 conversations. New rules
have general versatility, and they are useful in other
scenarios, too. These results show that our system can
help developers of this NMS sufficiently during the
introduction of a new NE. On the other hand, it is very

Auto connect

Target NEInterface diagnosis system

Configuration data backup

Diagnosis 1

Is the conversation
“correct”?

Model
answers

Diagnosis
conversation

1

Connection
(from vendor
characteristics)

Judgment

Diagnosis
conversation

2

Judgment

Diagnosis
conversation

x

Judgment

Diagnosis 2

•
•
•

Configuration data rollback

Auto disconnect

Adapter script
for the

target NE

Fig. 7. Behavior of a diagnosis component.

Special Feature

50 NTT Technical Review

important for us that our system had a GUI function
that enabled operators to easily add a new rule and
start a trial immediately.

6. Conclusion

We described interface blending/diagnosis technol-
ogy for automatically generating an interface adapter
and explained the component design of an interface
diagnosis system. We tested a prototype system to
confirm the feasibility of our technology. In this trial,
we were able to obtain effective responses for all con-
versations that we wanted to generate. Therefore, we
think that we have proven the possibility of develop-
ing interface adapters. Moreover, we found command
setting patterns that the system can use for NEs of
other vendors.

References

[1] “Device Authority Suite Overview,”
http://www.alterpoint.com/products/

[2] “HP OpenView - Computer and Network Management,”
http://www.managementsoftware.hp.com/

[3] “JP1 Version 7i,” http://www.hitachi.co.jp/Prod/comp/soft1/jp1/
[4] H. Yaginuma, N. Hatakeyama, T. Kimura, and Y. Otsuka, “Study of

a risk analysis method based on multilayer network resource infor-
mation,” FIT2003 M-038, 2003.

[5] Y. Miyoshi, T. Kimura, Y. Otsuka, Y. Fujita, S. Majima, and K. Suda,

“An Implementation of Service Resource Management Architecture,”
Technical Proceedings WTC/ISS2002, 2002.

[6] J. Strassner, “A Model Driven Architecture For Telecommunications
Systems Using DEN-ng,” 1st International Conference on E-business
and Teleccomunication Networks Proceedings, Vol. 1, 2004.

Yu Miyoshi
Software Service Group, Network Software

Service Project, NTT Network Service Systems
Laboratories.

He received the B.E. and M.E. degrees in elec-
tronics, information, and communication engi-
neering from Waseda University, Tokyo in 1998
and 2000, respectively. In 2000, he joined NTT
Network Service Systems Laboratories, Tokyo,
where he was engaged in R&D of network and
service operation systems. He is now studying
automation settings for network elements. He
received the 2004 IEICE Young Researchers’
Award. He is a member of the Institute of Elec-
tronics, Information and Communication Engi-
neers (IEICE) and the Information Processing
Society of Japan.

Tatsuyuki Kimura
Senior Research Engineer, Software Service

Group, Network Software Service Project, NTT
Network Service Systems Laboratories.

He received the B.E. degree in mechanical
engineering from Keio University, Tokyo in
1990. He joined NTT in 1990. Since then, he has
mainly been engaged in research on transmission
network management. He is currently working
on the modeling of network management func-
tions and multi-layered network management
systems. He is a member of IEICE.

Interface diagnosis system

Replace
the target NE

Test network

Modify
input scripts

Fig. 8. Verification trials.

