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1.   Background

In parallel with the evolution of broadband net-
works and digital audio equipment, information rates
for delivery and storage keep growing rapidly in
response to demands for high-quality audio signals
(high sampling rates, high word resolution, and mul-
tiple channels). NTT Communication Science Labo-
ratories recognized the importance of lossless com-
pression of audio signals and the standardization of
its technology, considering interoperability, long-
term maintenance, and clear status of intellectual
property rights. The Laboratories took the initiative
in promoting this technology and advancing it to a
standard in MPEG (moving picture experts group),
which is a working group within ISO/IEC (Interna-
tional Standards Organization, International Elec-
trotechnical Commission).

NTT initiated discussion on the need for and
requirements for such a standard and prepared the
technical call for technologies. Through the normal
standardization process, several improvements and
integration efforts were applied to the initial refer-
ence model. The partners for this standardization
included the Technical University of Berlin (Ger-

many), RealNetworks Corp. (USA), and I2R (Singa-
pore).

As a result of the final ballot in December 2005, the
specifications of the lossless coding were officially
established as “14496-4 3rd edition amendment 2
(ALS: audio lossless coding)” and published in
March 2006 [1]-[5]. Note that, in parallel, MPEG-4
also established MPEG-4 SLS (scalable lossless cod-
ing), which provides the special functionality of
lossy-to-lossless compression and bit-rate scalable
compression. In this article, we focus on the more
general compression tool: MPEG-4 ALS.

As shown in Fig. 1, MPEG audio standards have
made significant contributions to communication
systems including broadcasting, mobile services, and
Internet services. Most of the audio coding standards,
such as MP3 and AAC or the technology for the
MiniDisc system*1, are based on perceptual coding
with a high compression ratio in exchange for minor
waveform distortion at the decoder. These encoders
carefully control the quantization distortion by utiliz-
ing the characteristics of the human ear. The wave-
form is different from the original, although it is per-
ceptually very close to it. 

Unlike perceptual coding, lossless coding ensures
perfect reconstruction of the waveform without a sin-
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gle bit of difference. This property is very important
for applications such as waveform editing and the
archiving of high-quality audio signals. The cost of
perfect reconstruction is a limited compression ratio
and hence larger compressed file sizes, which range
from 15 to 70% of the original file size depending on
the statistical properties of the original waveform.
These comparisons are summarized in Table 1.

2.   Technical description

2.1   Fundamental principles
This technology is based on time-domain linear

prediction. The fundamental processing of encoding
and decoding is shown in Fig. 2. NTT Laboratories is
one of the pioneer contributors to the development of
linear prediction technology, which has been widely
used as an essential tool in speech coding systems
such as cellular phones and IP (Internet protocol)
phones. Linear prediction analysis estimates predic-
tion parameters that minimize the errors caused by
prediction from a certain number of past samples.
Integer values of the prediction error signal are trans-

mitted to the decoder. The decoder can reconstruct
the original waveform without a single bit error from
the prediction parameters and the prediction error
signal. The prediction error signal actually has small
amplitude values and they can be compressed by
means of an entropy coding method such as Rice
code, as shown in Table 2. It is obvious that the
smaller the amplitude, the shorter the code length. In
parallel, prediction parameters are actually converted
to PARCOR*2 coefficients and quantized. The coeffi-
cients are also compressed with a similar Rice code.
PARCOR coefficients are convenient for quantiza-
tion and stability checking. The prediction order can
be adaptively set from 0 (no prediction) to 1023.
Moreover, progressive order prediction is used at the
initial samples of the starting frames of the random

Fig. 1.   History of MPEG audio.
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Table 1.   Comparison of perceptual coding and lossless coding.

*2 PARCOR (partial auto correlation): A set of predictive parameters
invented by the Musashino Electrical Communication Laborato-
ries of Nippon Telegraph and Telephone Public Corporation (now
NTT) in 1972. This set has the property of stability and easy quan-
tization, so it is widely used for speech coding and synthesis and
in other signal processing areas.
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access points. 

2.2   Long-term prediction and multi-channel
prediction

Linear prediction utilizes the correlation between
neighboring samples. Speech and audio signals
sometimes have long-term correlation due to the
pitch. In addition, there is inter-channel correlation
between multiple channels. All these correlations can
be utilized to enhance the prediction performance and
hence reduce the bit rate. The extended prediction
scheme is shown in Fig. 3 [6], [7]. In the encoder, 5-
tap (5 independent coefficients) long-term prediction
and 3- or 6-tap multi-channel prediction are sequen-
tially applied to the short-term prediction error signal
to reduce the amplitude. 

For long-term prediction, the best delay parameter
from the previous sample and the associated weight-
ing factor are determined. For multi-channel coding,
channel-pair combinations are searched for to get the
maximum inter-channel correlation. In addition, the
relative delay parameter between the channel-pair

and the associated weighting factors are determined.
All these weighting factors are quantized and com-
pressed by Rice code.

2.3   Floating-point signals
The extended scheme for floating-point signals,

which makes use of the fundamental compression
structure for the integer signal, is shown in Fig. 4 [8]-
[10]. The floating-point format is useful for profes-
sional mixing of music because there is no risk of
overflow or underflow. However, this format cannot
be compressed because its nominal value has no cor-
relation between samples. In response, we invented a
novel scheme that decomposes a floating-point signal
sequence into an integer sequence and the remaining
sequence. We also invented the ACF (approximate
common factor) scheme, which has achieved a great
improvement in the compression performance when
the input floating-point value sequence is generated
from an integer value sequence multiplied by a com-
mon number throughout the frame. The common
number can be detected by means of rational approx-
imations even though the input samples have errors
due to truncation or other operations. The remaining
sequence is further compressed by masked LZ*3 com-
pression, making full use of the properties inherited
from the decomposition processes.

2.4   Other features
The ALS standard has some additional operation

*3 LZ (Lempel-Ziv): Universal lossless compression tool invented
by Lempel and Ziv and used in ZIP. This tool adaptively updates
the codebook depending on the input sequence and is useful for the
compression of text and program source code. 

Fig. 2.   Fundamental structure of encoder and decoder.
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modes. One is a backward prediction mode, which
attains efficient compression performance at the cost
of longer processing times in the encoder and
decoder. Another mode uses a hierarchical adaptive
block switching mechanism for higher compression
performance. Furthermore, there are several other
control parameters at the encoder, which may be effi-
ciently estimated in the future without losing confor-
mity to the standard.

3.   Practical evaluation

ALS is compared with other available lossless cod-
ing tools (free software and MPEG-4 SLS) in terms

of compression ratio (the smaller the better) and
decoding time (the smaller the better) in Fig. 5. In
addition, the performance of NTT’s proprietary opti-
mized decoder is shown. We can see from this figure
that the standard provides the state-of-the-art perfor-
mance. Note that the compression performance of
ALS outperforms that of general-purpose compres-
sion tools such as ZIP, so far as audio signals are con-
cerned.

This standard accepts a wide range of waveform
formats as input for compression, as shown in Table
3, and can be used for most of the audio-related appli-
cations. Encoding can be executable in real time
while the music is being played back on a low-end
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Fig. 4.   Extension for floating-point input.
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personal computer, and decoding can be executed
more than ten times faster than the playback time. In
other words, the load on the central processing unit
for decoding is negligible for most applications. For
a typical server/client music delivery system (Fig. 6),
the total download time can be significantly reduced
because the download file size is significantly
reduced, decoding time is less than the download
time, and decoding can be executed in parallel with

downloading. This holds true even if an optical fiber
high-speed connection is used.

4.   Future tasks

It is expected that this standard will be used for
common tools for various applications and will con-
tinue to be maintained so that compressed files can be
perfectly decoded even 100 years in the future. It is
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Fig. 6.   Example of application scenario (music delivery).
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Fig. 5.   Comparison of compression performances.

Max. sampling frequency

Max. amplitude resolution

Max. number of channels

Formats

MPEG-4 ALS

192 kHz

32 bits

65,536

Integer and floating-point value

CD (reference)

44.1 kHz

16 bits

2

Integer

Table 3.   Waveform formats supported by MPEG-4 ALS.



also expected that a consortium of essential patent
holders will be organized for collecting and deliver-
ing the patent royalties. 

NTT Communication Science Laboratories will
continue to support the standardization of confor-
mance and reference software and the enhancement
of encoder performance. In parallel, NTT Communi-
cations will design and provide integrated delivery
and archiving systems making use of practical soft-
ware that complies with this standard. In addition,
NTT Group companies will collaborate with partners
or issue licenses to other organizations for various
applications including professional audio editing
tools, portable music players, and editing and archiv-
ing systems for medical and environmental data.
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