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1.   Introduction

The need for monitoring systems is increasing due 
to changes in social conditions. In particular, the 
application of intelligent processing functions to the 
monitoring of images is expected to yield services 
such as the detection of suspicious human behavior 
and effective product display design in shops. These 
functions require techniques for detecting humans in 
images, the direction in which they are facing, and 
their body poses. These are collectively called human 
pose estimation techniques.

While real humans are three dimensional, the image 
captured by a monitoring camera is two-dimensional 
(2D). The key to human pose estimation is the ques-
tion of how the three-dimensional (3D) state can be 
estimated from 2D information. Human pose can be 
estimated by movement differentiation and can be 
roughly categorized into two types. One type is the 
pose and direction of the head. The information avail-
able in a sequence of images mainly consists of 3D 
rotations, i.e., yaw, roll, and pitch. Other changes 
such as changes in facial expression are relatively 
small. The other type, body pose, is indicated by 
region state information such as a limb position, and 
elbow and knee flexions. This information includes 
not only 3D rotation, but also complicated changes 

arising from elbow and knee movements.
In this article, we first describe two methods (Fig. 

1) that are appropriate for estimating these two pose 
types. Head pose estimation is achieved by 2D match-
ing between a practical monitoring image and stored 
face images that are captured in advance by a single 
camera from all directions. Body pose estimation is 
achieved by regenerating a 3D human image from 
images captured by multiple cameras.

2D matching can estimate only the face direction, 
but its costs are low. 3D regeneration can estimate the 
entire body state, but its costs are high. One of these 
two methods should be selected depending on the 
situation envisaged.

Second, we describe a sophisticated 3D figure 
acquisition method that can estimate the face pose 
from a single-camera input and estimate the body 
pose from multiple cameras.

2.   Face pose estimation
using single-camera input

2.1   Overview
Methods that can estimate object pose from the 

images captured by a single camera have a very broad 
range of applications. Many estimation algorithms 
have been proposed [�]–[3]. We have devised a prac-
tical algorithm from a similar point of view. In this 
section, we describe an experiment on face pose esti-
mation and present its results.

The basic concept of our method is shown in Fig. 2. 
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Face pose is estimated by determining the best match 
between the input image and images stored in a data-
base. This method, however, has two disadvantages: 
a huge amount of memory is required to implement 
the basic concept and matching takes too long. To 
eliminate these drawbacks, we are studying a new 
matching method that has a function that approxi-
mates the relationships between the image and pose 
parameters (yaw, roll, and pitch) by utilizing two sta-
tistical methods at the same time: principal compo-
nent analysis (PCA) and support vector regression 
(SVR) [4].

2.2   SVR-based approach
The method is composed of the training process 

and the pose estimation process. In the training pro-
cess, an eigenspace is derived from the training vec-
tors, which are images of the same 3D object in vari-
ous poses. Typical training images are shown in Fig. 
2. The pose estimation functions are derived from the 
training vectors projected to the eigenspace by using 
SVR. In the pose estimation process, an input vector 
is projected into the eigenspace. If the projected vec-
tor is fed into the pose estimation functions, the val-
ues of the pose parameters are output. The eigenspace 
is derived from the group of training image samples 
by using PCA. First of all, the intensities of all pixels 
in each image sample are raster scanned, and the set 
of values is taken as a vector. Next, each vector is 
normalized to make the norm of the vector equal �. 
An average vector and a covariance matrix are calcu-
lated from the normalized vectors, and eigenvectors 
are computed by PCA. The subspace, which is com-
posed of the �st to the dth component vectors, is 
called the eigenspace. The value of d is much smaller 
than the number of image pixels and also the original 
number of dimensions.

Pose estimation functions are derived as regression 
equations using SVR on the eigenspace. In this arti-
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Fig. 1.   Two approaches to human pose estimation.
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Fig. 2.    Basic concept for 3D object pose estimation using 
a single camera.
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cle, pose parameters are defined as yaw, pitch, and 
roll (hereinafter denoted by Y, P, R). Optimal regres-
sion coefficients are calculated to fit into a defined 
area called the e-insensitive band by SVR. If a sample 
does not fit into the e-insensitive band, a penalty is 
imposed according to the sample’s distance from the 
band edge. The penalty is minimized as much as pos-
sible. The pose estimation function is defined as

f(x) = 
m

S
i=�

(a i*−a i)k(xi, x) + b,  (�)

where xi is the training vector and m is the number of 
xi . In this article, x (xi) is the input (training) vector 
that is projected into the eigenspace. Function f(x) is 
derived for each parameter value: sin Y, cos Y, sin P, 
cos P, sin R, and cos R. (To handle periodic functions, 
pose parameter q is split into subparameters sinq and 
cosq.) k(xi, xj) is called the kernel function; examples 
include the polynomial kernel and Gaussian kernel. 
ai

*, ai, and b can be computed by solving the optimi-
zation problem expressed by maximizing

(a, a*∈ℜm) W (a, a*) = −e 
m

S
i=�

(ai
*+ai) +  

m
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(ai
*−ai) yi  
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m

S
i, j=�

(ai
*−ai) (aj

*−aj) k (xi, xj)

subject to 0 <− ai, ai
*<− C for all i = �, ..., m and 

 
m

S
i=�

(ai −ai
*) = 0. (2)

2.3    Algorithm robust against local occlusions and 
non-stationary backgrounds

Furthermore, we add the following process in order 
to estimate the true pose even if the lighting condi-
tions and background in the input image differ from 
those used when capturing the reference images or if 
the input image contains local occlusions [5].

This additional method extracts the modified gradi-
ent feature from images instead of the conventional 
image brightness pattern. This feature is, in part, gen-

erated by filtering the edge directions because such 
information is not influenced by changes in lighting 
or background.

The other additional method is that pose estimation 
values are calculated in each independent area: the 
input image is divided into multiple areas. Our meth-
od selects the most relevant value from all area data. 
The weighted median value based on reliability is 
utilized in this selection step. The reliability is 
obtained by the degree of similarity with captured 
image patterns. Since the estimation value is ignored 
when the images are occluded, the estimation values 
calculated in non-occluded areas can provide appro-
priate pose parameters.

Pose estimation results for the captured image in 
Fig. 2 are shown in Fig. 3. The estimated pose is indi-
cated by 3D coordinate axes. The Z-axis indicates the 
direction in which the face is pointing. This figure 
demonstrates that the pose was estimated well.

The human face pose estimation result output by 
this method is shown in Fig. 4. The human face direc-
tion is precisely estimated for the normal movements 
that appear in the monitoring image. In this experi-
ment, images of the same person were used in the 
estimation process and used as the capture process. 
We believe that our method can be expanded to 
unspecified face pose estimation by a modification in 
which facial images of multiple persons are captured 
simultaneously.

3.   Human body 3D shape regeneration
by multiviewpoint cameras

3.1   Overview
The technique of 3D shape modeling from multi-

viewpoint videos has recently become popular. 3D 
shape data of a moving person can be utilized to ana-
lyze human motion and understand human actions. 
First of all, we introduce our comprehensive motion 
analysis scheme for 3D body shape regeneration. The 
scheme contains the following three steps:

(a) (b)

Fig. 3.   Pose estimation results.

(a) (b)

Fig. 4.   Face pose estimation results.
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�. Multiviewpoint camera studio setup. In this step, 
the camera layout is determined and a synchroniza-
tion mechanism is used to achieve the synchronized 
capture of the target from multiple viewpoints. The 
cameras are also calibrated in this step; the locations 
and the viewing directions of all cameras are accu-
rately measured.

2. Wide-area 3D shape regeneration. While the 3D 
shape modeling technique has become popular, 3D 
shape regeneration of a moving person still faces sev-
eral technical issues. Previous related studies used 
small areas for 3D shape regeneration, so it is difficult 
to obtain a 3D model of natural motion using them. 
We have developed an extended algorithm for wide-
area 3D shape regeneration.

3. 3D skeleton extraction. In this step, by fitting 
reconstructed 3D shape data to a 3D skeleton model, 
we can get the motion parameters of each part of the 
body. Such motion parameters are obviously useful 
for motion analysis and action understanding.

Among the above steps, 3D shape regeneration is 
the key technique, so we describe it in detail below.

3.2   Wide-area 3D shape regeneration
We use the silhouette volume intersection method 

[6], [7], [8], [��]–[�3] as a basic computational algo-
rithm to obtain the 3D shape of the object from mul-
tiview images (Fig. 5). This method is based on the 
silhouette constraint that a 3D object is encased in the 
3D frustum produced by back-projecting a 2D object 
silhouette onto an image plane. With multiview object 
images, therefore, an approximation of the 3D object 
shape can be obtained by intersecting such frusta. 
This approximation is called the visual hull [�0]. 
Recently, this method was further extended by using 
photometric information to reconstruct shapes more 
accurately [9].

3.2.1    Naïve algorithm for obtaining shape from 
silhouettes

Shape from silhouettes (SFS) is a popular method 
of obtaining a 3D shape. The naïve algorithm of SFS 
is described below. One frame of the silhouette 
observed by one of the cameras is shown in Fig. 6. 
Black represents the background and white the target. 
The gray polygon means the voxels projected on the 
screen. Let i be the camera index of the N-camera 
system, and let n denote one voxel. For voxel v, let 
w(v) denote the occupation state of v. That is, if w(v) 
= �, then v is occupied by the target; if w(v) = 0, then 
v is empty. This w(v) can be simply computed by the 
following equation.

w(v) = P
N
  wi (v),  (3)

where wi(v) is defined for each camera as shown 
below.
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Fig. 5.   Silhouette volume intersection.
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(a) (b) (c)

Silhouette

Fig. 6.   Naïve volume intersection algorithm.
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� (v is projected onto the target, as shown in 
Fig. 6(b) or (c))

wi(v) = {  (4)
0 (otherwise, as shown in Fig. 6(a))

Note that if v is projected out of the picture, wi(v) is 
defined to be 0, and the voxel is determined to be 
empty by Eq. (3).

3.2.2    Extension algorithm using partially 
observed silhouettes

It is clear that the limitation of the naïve SFS is due 

to the definition used in Eq. (4), where the state in 
which the voxel cannot be observed by the camera is 
not distinguished from the state in which the voxel is 
projected onto the background. Therefore, our algo-
rithm introduces a representation to handle the “out-
side the field of view” case, as shown in Fig. 7.

Adding the “outside” part to the definition means 
that we have a total of six different cases when pro-
jecting one voxel onto one camera screen. Three of 
the cases are shown in Fig. 8 and the other three are 
shown in Fig. 9. In addition to variable wi(v), we 
introduce oi(v) to represent whether or not v is 
observed outside the field of view. It is defined by the 
following equation.

� (v is projected outside, i.e., cases shown in 
Fig. 8)

oi(v) = {  (3)
0 (otherwise, i.e., cases shown in Fig. 9).

Here, the definition of wi(v) is modified as follows.

(v is projected onto the target, i.e., cases 
shown in 

wi(v) = {
 

� Fig. 8(a−3) or Fig. 9(b−2) and (b−3))
0 (otherwise, i.e., cases shown in (4)

Fig. 8(a−�) or (a−2) or Fig. 9(b−�)).

According to this definition, for voxel v, if oi(v) = �, 

Voxel

Outside the field of view

Backgroud

Silhouette

Fig. 7.    In addition to “target” and “background”, we also tag 
“outside the field of view”.

(a-1) (a-2) (a-3)

Fig. 8.   Cases in which the voxel is projected outside.

(b-1) (b-2) (b-3)

Fig. 9.   Cases in which the voxel is projected inside.
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it means that v is not entirely observed by the i-th 
camera. For the N-camera system, if S

N
 oi (v) = N, it 

means that v is not entirely observed by any of the 
cameras. That is, the occupation of the voxel cannot 

Fig. 11.    Regenerated sample from naïve volume 
intersection. We decided to exclude the head part 
because not all the cameras captured a complete 
body image.

Fig. 12.    Regenerated sample from extended shape from 
silhouette: Although the target was not fully 
observed, the full body was regenerated.

Projection

Projection

Projection

Detection using octree structure

Multi-resoluton images

Fig. 10.   Fast target area detection.
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be truly determined by the system. On the other hand, 
if S

N
 oi (v) = 0, it means that the voxel is observed by 

all cameras and the occupation can be determined by 
the naïve SFS shown above. Accordingly, we take the 
value of S

N
 oi (v) as the reliability of the system for 

voxel v, and we introduce threshold T(v) for voxel v; 
occupation computing is conducted as shown below.

First, we project voxel v to all N cameras. We then 
have the set {wi(v)|i = �, 2, ..., N} and the set {oi(v)|i 
= �, 2, ..., N}. Here, we define the set W(v) as

W(v) = {wi(v)| if oi(v) = 0, i = �, 2, ..., N}.  (5)

Second, we define a reliable intersection function, 
w'(v) as

w'(v) =     P wi(v),
wi(v)∈W(v)

 (6)

where w'(v) is just the occupation result calculated by 
the cameras, where v is entirely observed. Introduc-
ing the threshold, T(v), lets us perform the final occu-
pation computation as follows.

w'(v)     S
N
 oi (v) < T(v)

w (v) = {  (7)
P
N
  wi (v) otherwise.

Note that the threshold is defined as a function of v. 
This means that the reliability of the system is loca-
tion-sensitive. In practice, the reliability is deter-
mined by the camera layout. That means that if the 
cameras are fixed, for each voxel, the number of cam-
eras that can completely observe the voxel can be 
calculated beforehand and the threshold can be deter-
mined from that number.

The above extension has the effect, for each voxel, 
of filtering the camera output according to each 
camera’s field of view. As a result, there is no need for 
all cameras to fully observe all voxels forming the 
computation region. That is, full 3D shapes can be 
computed from partially observed silhouettes.

3.2.3    Fast target area detection using octree 
searching algorithm

The computation region for shape regeneration can 
be enlarged by applying the shape from the partial 
silhouette algorithm. Generally speaking, computa-
tion complexity increases as the region becomes 
large. To shorten the computation time, we use an 
octree-based search algorithm to detect the target area 
before conducting wide-area shape regeneration.

In practice, we divide the entire space into cubes. 
The target area can then be defined as a subset of the 

total set of cubes. To find which cubes are within the 
target area, we use the octree searching algorithm. 
The processing flow, shown in Fig. 10, is well known, 
so details of the algorithm are omitted. Moreover, by 
preparing a multiresolution silhouette image pyra-
mid, we can speed up target area detection even 
more.

The results of the naïve SFS algorithm are shown in 
Fig. 11, where the head part of the person is excluded. 
Since not all of the cameras were configured to cap-
ture the full body of the person perfectly, we decided 
to exclude the head part. The results of our extended 
algorithm, when applied to the silhouette images 
from the same input, are shown in Fig. 12. These 
results prove the effectiveness of our extended algo-
rithm.

4.   Conclusion

Our extension of the SFS algorithm yields truly 
effective multiviewpoint camera systems that offer 
3D shape regeneration over wide areas. We have also 
developed a fast target area detection method based 
on the octree search algorithm. Experiments have 
demonstrated the effectiveness of the extended algo-
rithm. 3D shape capturing systems such as these will 
enable the full-body shapes of moving people to be 
obtained and utilized for motion analysis. We are now 
developing a compact capture system that is easy to 
set up and are testing it in trials. In future, we intend 
to expand the technique by including advanced 
human behavioral analysis based on the pose infor-
mation yielded by the basic technique.
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  S  Ŝ t, i.
B+P

N=i



Special Feature

Vol. 5 No. 11 Nov. 2007 8

refinement across time: A 3D reconstruction algorithm combining 
shape-from-silhouette with stereo,” Proc. of the IEEE Conference on 
Computer Vision and Pattern Recognition, Vol. 2, pp. 375–382, June 
2003.

[9] K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carv-
ing,” Proc. of International Conference on Computer Vision, Vol. �, 
pp. 307–3�4, Kerkyra, Greece, �999.

[�0] A. Laurentini, “How far 3D shapes can be understood from 2D silhou-
ettes,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 
�7, No. 2, pp. �88–�95, �995.

[��] W. N. Martin and J. K. Aggarwal, “Volumetric description of objects 
from multiple views,” IEEE Trans. on Pattern Analysis and Machine 
Intelligence, Vol. 5, No. 2, pp. �50–�58, �987.

[�2] W. Matusik, C. Buehler, and L. McMillan, “Polyhedral visual hulls 
for real-time rendering,” Proc.˙of the �2th Eurographics Workshop on 
Rendering Techniques, pp. ��5–�26, 200�.

[�3] X. Wu, O. Takizawa, and T. Matsuyama, “Parallel pipeline volume 
intersection for real-time 3D shape reconstruction on a PC cluster,” 
Proc. of ICVS’06, New York, 2006.

Shingo Ando
Research Engineer, Visual Media Communica-

tions Project, NTT Cyber Space Laboratories.
He received the B.E. degree in electrical engi-

neering and the Ph.D. degree in engineering from 
Keio University, Kanagawa, in �998 and 2003, 
respectively. Since joining NTT in 2003, he has 
been engaged in research and practical applica-
tion development in the fields of image processing 
and pattern recognition. He is a member of the 
Institute of Electronics, Information and Com-
munication Engineers (IEICE) of Japan.

Xiaojun Wu
Research Engineer, Visual Media Communica-

tions Project, NTT Cyber Space Laboratories.
He received the B.S. degree in electrical and 

electronic engineering, the M.S. degree in infor-
matics, and the Ph.D. degree in informatics from 
Kyoto University, Kyoto, in �998, 2000, and 
2005, respectively. Since joining NTT Laborato-
ries in 2005, he has been engaged in research on 
computer vision, focusing on 3D shape recon-
struction of the human body using multiviewpoint 
cameras. He is a member of IEICE.

Kaoru Wakabayashi
Senior Research Engineer, Visual Media Com-

munications Project,  NTT Cyber Space 
Laboratories. 

He received the B.E. degree in electro-commu-
n i c a t i o n s  f r o m  t h e  U n i v e r s i t y  o f 
Electro-Communications, Tokyo, in �982 and the 
Ph.D. degree in electronic engineering from the 
University of Tokyo, Tokyo, in �999. Since join-
ing Nippon Telegraph and Telephone Public 
Corporation (now NTT) in �982, he has been 
engaged in research on facsimile communica-
tions networks, binary image processing, map 
information processing, cognitive mapping and 
understanding, and visual monitoring systems. 
He received the �993 NTT President’s Award, the 
�998 AM/FM International Japan Best Speaker 
Award, the 2006 ICPR Best Paper Award, the 
2006 Funai Best Paper Award, and the 2006 
IVCNZ Best Paper Award. He is a member of 
IEICE and the Information Processing Society of 
Japan.

Hideki Koike
Senior Research Engineer, Supervisor, Group 

Leader, Visual Media Communications Project, 
NTT Cyber Space Laboratories. 

He received the M.S. degree in mathematics 
from Tohoku University, Miyagi, in �985. He 
joined NTT Labs. in �985 and engaged in re-
search on image processing. He was transferred 
to NTT COMWARE in 200� and engaged in re-
search on RFID. He moved to NTT Cyber Space 
Labs. in 2007 and is engaged in research on com-
puter vision. He is a member of IEICE.

Akira Suzuki
Senior Research Engineer, Visual Media Com-

munications Project,  NTT Cyber Space 
Laboratories. 

He received the B.E., M.E., and Dr.Eng. de-
grees in engineering from Shizuoka University, 
Shizuoka, in �983, �985, and �998, respectively. 
He joined NTT in �985. He has been engaged in 
research and practical application development 
in the fields of document retrieval, character rec-
ognition, knowledge processing, and image 
processing. He is a member of IEICE.


