
� NTT Technical Review

1. Introduction

To achieve knowledge innovation, it is necessary to
deal not just with technology but with the existence of
needs as well and to understand those needs correctly.
For that reason, in the area of information systems
development, more is being expected of requirements
engineering, which is a technological method for
properly extracting and documenting customer
requirements and appropriately managing require-
ments across all development phases.

There are still, however, a number of issues involved
in the application of requirements engineering at the
development site. Actual system development sites
are currently characterized by increasing competition
across the industrial world in recent years, as well as
greater requirements of information systems. One
cannot ignore the percentage of projects that fail
because they are unable to meet at least one of the
goals of quality, cost, or delivery. For example, the
Japan Users Association of Information Systems
(JUAS) conducted a survey of user satisfaction with
system development and found that of large-scale
projects of at least 500 man-months, 46% of the proj-
ects were not completed by the deadline and 38%
experienced cost overruns [1]. JUAS has also report-

ed on the results of a user survey asking the reasons
for missed deadlines. The top two responses were
“delays in deciding on required specifications” and
“inadequate requirements analysis work”. When the
number of responses indicating “unsuitable request
for proposal content” was included, 42% of the total
responses indicated an awareness of problems related
to the requirements definition process [2].

We believe that one of the issues related to this situ-
ation is the fact that although there is wide awareness
that assuring quality is important during the require-
ments definition phase, the quality control and evalu-
ation methods for the requirements specifications,
which are the result of the process, are not very sys-
tematic, so it is hard to decide if the requirements
definition process has been successful or not. During
software development, quality evaluation normally
entails a comprehensive evaluation based on both
qualitative and quantitative factors. On the quantita-
tive side, the result of the requirements defining pro-
cess is a document, so in many cases only a rather
rough method is used; namely, the number of items
pointed out during the requirements specifications
review and the number of defects actually discovered
per unit page are calculated and compared with fig-
ures from earlier projects (below, the number of
requirements defects per unit page is referred to as the
defect detection rate). Although there have been cases
where something close to a system of classifying
defects occurring during design processes has been

Special Feature: Knowledge Creation Design Methodology 	 for Service Innovation

Quality Analysis of Information
Technology Requirements to
Support Knowledge Innovation
Noboru Hattori† and Shuichiro Yamamoto
Abstract

At the Research and Development Headquarters of NTT DATA, researchers are investigating whether
it is possible to perform a more detailed analysis and evaluation of the quality of the requirements defini-
tion process by focusing on the structural components for requirements notation and classifying require-
ments defects detected during requirements specification reviews according to structural components.

†	 NTT DATA
	 Koto-ku, 135-8671 Japan
	 Contact: rdhkouhou@kits.nttdata.co.jp

Vol. 6 No. 7 July 2008 �

used, there is currently not much of a system for clas-
sifying requirements defects for practical use in the
development workplace.

For that reason, we have been pursuing research
and development into a method of analyzing the qual-
ity of requirements specifications in more detail by
focusing on the structural components of the require-
ments notation, reviewing requirements specifica-
tions, and classifying the requirements defects that
occur at the requirements management stage accord-
ing to the structural components in which the prob-
lem occurs. To date, actual software was produced
first and then requirements defects were often discov-
ered during the testing phase. We believe that by
becoming aware of these structural components
through the requirements definition phase, we should
be able to detect many of these requirements defects
earlier during the process of defining conditions.

2. Relationship between structural
components of requirements notation

and requirements defects

First, we discuss the structural components of
requirements notation, which are fundamental to the
requirements quality control method we are currently
studying, as well as the relationship between these
structural components and requirements defects. The
discussion concerning these structural components is
based on research published by S.Y., to which subse-
quent results of research have been added [3].

One may think of the functional requirements of
software this way: Following some input from the
actor under some circumstances on the occasion of
some event, a specified process is executed and out-
put, and the expected results are produced for the

recipient of those results. This is shown in Fig. 1.
Looking at the situation in the manner shown in Fig.
1, it is necessary to consider the relationship between
requirements defects and the vagueness of the struc-
tural components of the requirements notation. The
structural components of Fig. 1 are explained as fol-
lows.

(1)	 Requesting actor
The party who asks for a particular function. Sys-

tem users, subsystems, etc. correspond to this actor.
(2)	 Situation
The situation in which the requesting actor finds

itself when it asks for a function to be executed.
(3)	 Event
The occasion when the function operates. It is nec-

essary to look for the relationship between situations
and events in order to determine whether the neces-
sary event has been defined in response to each type
of situation.

(4)	 Input
The input for a function. It is necessary to examine

the correspondence to situations and events.
(5)	 Processing
The operation of the function. This is the portion

that is actually achieved through the software, etc. It
is necessary to define processing conditions based on
input, limitations on processing, processing content,
and so on.

(6)	 Output
The output of the function’s operation result. This

is achieved through an output screen, sent message,
or other means.

(7)	 Results
The situations that are to be produced for the results

actor as the result of processing output.

�

Special Feature: Knowledge Creation Design Methodology 	 for Service Innovation

Fig. 1. Requirements notation structural components.

Situation Event Input Processing Output Results Results
actor

Requesting
actor

What situation is a
requesting actor in?

What is
the occasion?

What kind of
input is it?

Functional specification

Vagueness: Ambiguity or lack of clarity in scope, content, or relationship

What does
the system do?

What is given
to the results actor?

Special Feature

� NTT Technical Review

Special Feature

NTT Technical Review

(8)	 Results actor
The party who receives the results of the function’s

execution. The results actor may be the same as the
requesting actor.

We conducted an analysis of requirements defect
reports in an actual system development project in
order to determine whether bad characteristics such
as vagueness, incorrectness, ambiguity, or incom-
pleteness or inconsistencies of requirements notation
structural components can explain requirements
defects that occur during actual software develop-
ment. Analysis was performed on 336 requirements
defects occurring after the completion of the require-
ments definition phase; in other words, those occur-
ring during the design phase or later. Of these, 300
defects (about 90%) yielded analysis results indicat-
ing that they were the result of such characteristics in
one of the structural components of Fig. 1. Some
examples of requirements defects from an actual sys-
tem development project for each of the structural
components with vagueness, incorrectness, etc. are
given in Table 1. In these examples, the expressions
used have been generalized so that specific informa-
tion could not be identified. The analysis results
appear to indicate the possibility that requirements
defects could be similarly explained by the incom-
pleteness of these requirements notation structural

components in other future development projects as
well [4].

3. Analysis of requirements quality categorized
by structural components

The results for defect detection rates for require-
ments categorized by each structural element in each
subsystem in the actual system development project
are given in Table 2. These values are relative to the
value for the requesting actor in subsystem A. By
comparing these values between subsystems, it may
be possible to perform an analysis and make use of
the comparative data as shown below, for example.

(1)	 In subsystem B, the defect detection rates for
event and situation are higher than others. It is neces-
sary to review the requirements specifications again
and try to exhaustively examine defects concerning
these components.

(2)	 In subsystem C, the defect detection rates for
input, processing, and output are high, but the defects
in these components may be reasonable if the compo-
nents were examined exhaustively in the design phase
but not in the requirements definition phase. It may be
better to review other components, such as the
requesting actor and requesting actor’s situation,
again because they may be related to these defects.

Those who input value A were changed from customers to operators.

Those who operate terminals B were added to users of business C.

Processing when users do not release the connection even if a certain time passed was added.

Start time of business processing program E was changed.

It is necessary to generate instruction events to end process F internally.

In a certain situation, information D may be input, so the corresponding processing was added.

Examples

Transmission interval of event G was changed.

Checkboxes rather than drop down lists were used when users want to select following options.

Information H had to be input when logging in to achieve an adequate level of security.

Processing for checking the validity of input value J was added.

Default value for a table field K was not defined.

A defect in a formula was found and corrected.

Defects associated with screen element definitions for output were found and corrected.

Information in popup window was changed.

Maximum display period of a certain output was defined.

Personal data in output display screen had to be sorted into corresponding organizations.

New retrieval condition was added to improve screen response time and decrease the number of items displayed.

User H was added as a recipient of delivered information.

Requesting
actor

Event

Situation

Classification
by components

Input

Processing

Output

Results

Results actor

1

2

4

5

6

3

No.

7

8

9

10

11

12

13

14

15

16

17

18

Table 1. Examples of requirements defects from actual system development projects.

Special Feature

Vol. 6 No. 7 July 2008 �

(3)	 The total defect detection rate for subsystem E
is the lowest among the subsystems. However, the
defect detection rate for the situation is the second
highest. It may be necessary to try to detect defects
concerning the situation because it is a more upstream
component of the requirements description. If there is
vagueness, incompleteness, etc. about the situation, it
will be necessary to reexamine other components cor-
responding to the situation.

It is not possible to talk about these things by focus-
ing only on the number of requirements defects with-
out actually classifying the defects; this would appear
to be a case where an analysis of the requirements
quality based on the requirements notation structural
components would be effective. By confirming the
relationship between these structural components and
requirements defects, it should be possible to exam-
ine the relative importance of requirements defects
and the relative priority of dealing with them and to
make revisions to other structural components corre-
sponding to the structural components in which
defects have been detected. Here, we have compared
values between subsystems, but we believe that with
more project data for this case, it should be possible
to compare with data from earlier projects and even
to detect signs of a project experiencing problems at
an early stage.

4. Future issues

It will be necessary to determine whether it is pos-
sible to apply a method of analyzing requirements
quality based on requirements notation structural

components in actual development projects. It will
also be necessary to test the hypothesis that if this
method is applied to actual development projects
from the beginning of the requirements definition
phase, it will be possible to detect more requirements
defects in the requirements definition phase and thus
achieve a reduction in the number of requirements
defects that occur after the requirements definition
phase.

Even from the perspective of a review when per-
forming requirements specifications reviews, these
requirements notation structural components may
still be effective. It will also be necessary to further
refine the analysis method and make it easier to use
by those connected with actual development projects.
We hope that integrating such verifications into
actual development projects as they are performed in
the future will promote the establishment and prog-
ress of development-site-oriented requirements engi-
neering.

References

[1]	 Japan Users Association of Information Systems (JUAS), “Report of
Enterprise IT Trend Survey 2006,” JUAS, Tokyo, 2006 (in Japa-
nese).

[2]	 Japan Users Association of Information Systems (JUAS), “Survey of
Software Metrics in IT User Enterprise 2006,” JUAS, Tokyo, 2006 (in
Japanese).

[3]	 S. Yamamoto, “Serial Requirements Engineering No. 38, Vagueness
of Requirements,” Business Communication, Vol. 44, No. 12, pp.
68–72, Business Communication, Inc., Tokyo, Dec 1, 2007 (in Japa-
nese).

[4]	 N. Hattori and S. Yamamoto, “Requirements Quality Management
based on the Requirements Structure,” IEICE Technical Report, Vol.
107, No. 505, SS2007-73, pp. 97–102, 2008 (in Japanese).

1.00

0.00

0.40

0.00

0.34

Subsystem A

Subsystem B

Subsystem C

Subsystem D

Subsystem E

1.00

3.70

0.80

2.06

3.41

12.00

3.23

0.00

1.65

1.02

0.00

1.39

5.19

0.41

0.00

9.00

3.23

3.19

1.24

1.02

0.00

7.85

5.99

6.18

0.68

0.00

1.39

0.80

1.65

0.00

0.00

0.00

0.00

0.41

0.00

23.00

20.79

16.36

13.59

6.48

Requesting
actor

Situation Event Input Processing Output Results
Results
actor

Total

Table 2. Example of defect detection rates sorted by structural components of requirements notation in each subsystem.

Special Feature

� NTT Technical Review

Shuichiro Yamamoto
Fellow of NTT DATA Research and Develop-

ment Headquarters.
He received the B.S. degree in information

engineering from Nagoya Institute of Technolo-
gy, Aichi, and the M.S. and D.Eng. degrees in
information engineering from Nagoya Universi-
ty, Aichi, in 1977, 1979, and 2000, respectively.
He joined Nippon Telegraph and Telephone Pub-
lic Corporation (now NTT) in 1979 and engaged
in the development of programming languages,
CASE tools, network-based smart card environ-
ments, and distributed application development
platforms. His research interests include distrib-
uted information systems, requirements engi-
neering, ubiquitous computing, knowledge cre-
ation, and knowledge management. He moved to
NTT DATA in 2002. He is currently responsible
for research projects on systems science for
knowledge innovation.

Noboru Hattori
Deputy Senior Researcher, Center for Applied

Software Engineering, Research and Develop-
ment Headquarters, NTT DATA.

He received the B.Ec. degree from Keio Uni-
versity, Tokyo, in 1989. He joined NTT DATA in
1989. He has worked in R&D of communication
protocols, empirical software engineering and
requirements engineering, etc. He is a member of
the Information Processing Society of Japan, the
Association for Computing Machinery, and
IEEE Computer Society.

