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1.   Introduction

Face-to-face conversation is one of the most basic 
forms of communication in daily life and group meet-
ings are used for conveying/sharing information, 
understanding others’ intentions/emotions, and mak-
ing decisions. To develop information and communi-
cations technology that can support our communica-
tion in a face-to-face setting and/or remote meetings, 
it is important to understand how we communicate 
with each other and what kinds of behavior must be 
conveyed in messages for communications to be suc-
cessful. To answer these questions, we have focused 
on nonverbal messages/behaviors that appear in face-
to-face conversations because psychologists have 
suggested that they play important roles in human 
communications [1]. Nonverbal messages are 
expressed by nonverbal behaviors in multimodal 
channels such as eye gaze, facial expressions, head 
motion, hand gestures, body posture, and prosody. 
Therefore, it is expected that conversation scenes can 
be largely understood by observing people’s nonver-
bal behaviors with sensing devices such as cameras 
and microphones.

From the abovementioned viewpoint, we have been 

working on audio and vision technologies and their 
integration in order to understand human-human con-
versation scenes. We call the task here conversation 
scene analysis; its goal is to provide automatic 
description of conversation scenes in terms of 6W1H, 
i.e., Who, When, Where, Whom, What, Why, and 
How. By combining some 6W1H questions, we can 
define a number of problems from low-level (close to 
physical behavior) to high-level (contextual and 
social level) ones. For example, who is speaking is the 
most essential question and is called the speaker 
detection problem. The combination of Who and 
When yields problems called speaker diarization, i.e., 
who is speaking when. So far, speaker diarization has 
been a central problem in the field of audio-based 
communication analysis. Furthermore, the question 
of who is talking to whom and when requires multi-
modal information because the direction of address-
ing cannot be detected from only the audio signal, but 
is indicated by visual behaviors such as gaze, face 
direction, and body pose. Moreover, What involves 
the content of the conversation, which is mainly car-
ried by the verbal modality. How questions are related 
to the emotions and attitudes of people, and Why 
questions require total understanding of the context 
of the conversations.

As the initial step to conversation scene analysis, 
our research groups have focused on lower-level 
problems such as who is speaking when, who is talk-
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ing to whom, and who responds to whom, when, and 
how. This article introduces some of our recent 
research progress. Section 2 overviews the compo-
nent technologies of audio, visual, and multimodal 
processing. Section 3 describes a demonstration sys-
tem of realtime conversation scene analysis based on 
multimodal integration. Section 4 discuss future 
works and conclude this article. 

2.   Audio-visual component technology

To capture nonverbal behaviors appearing in face-
to-face meeting situations, our groups have been 
developing component technologies for analyzing 
audio, visual, and multimodal data. Audio technology 
is mainly being developed in the signal processing 
group in the Media Information Laboratory in NTT 
Communication Science Labs. Vision and multi-
modal technologies are mainly being developed in 
the Media Recognition Group. 

2.1   Audio technology
Audio-related nonverbal behaviors include the 

presence/absence of utterances, prosody, stressing, 
and rate of speech. Among them we have achieved 
automatic detection of the presence/absence of utter-
ances in a meeting situation. Currently, we aim to 
estimate who is speaking when in a meeting. As men-
tioned in the introduction, the estimation of who is 
speaking when is an essential technique for conversa-
tion scene analysis, and it is termed speaker diariza-
tion. 

The processing in the audio part of our system is 
illustrated in Fig. 1. We utilize audio signals captured 
by a microphone array to determine who is speaking 
at each time step. Our diarization technique uses the 
methods proposed in [2]; the key parts are a noise-
robust voice activity detector (VAD), a direction of 
arrival (DOA) estimator, and a DOA clustering part. 
That is, our diarization system relies on the speaker 
positions to estimate who is speaking when. The 
advantage of our system is that we do not require any 

prior knowledge about the number of people and 
noise sources.

2.1.1   Voice activity detection
First, our VAD technique discriminates whether or 

not the current audio observations include speech 
signals. This step is very important, especially for a 
noisy meeting. For a speech/non-speech discrimina-
tor, we have developed a VAD method called “Multi 
Stream Combination of Likelihood Evolution of 
VAD” (MUSCLE-VAD) [3]. It integrates two speech 
features to improve the robustness over various nois-
es. A block diagram of MUSCLE-VAD is shown in 
Fig. 2. It is constructed using two stream speech/non-
speech discriminators, i.e., periodic to aperiodic com-
ponent ratio-based detection (PARADE) [4], and an 
approach based on the switching Kalman filter (SKF) 
[5]. PARADE is robust against burst noise and SKF is 
robust against stationary and non-stationary noises. 
The combination of these two methods makes MUS-
CLE-VAD robust against a wide variety of noises that 
could conceivably occur in a meeting.

2.1.2   Direction of arrival estimation
To estimate the DOA for each speaker in a meeting, 

the GCC-PHAT technique [6] has been widely used. 
However, this technique sets the constraint of just one 
DOA in each timeframe, and it often fails to detect 
speakers correctly in the case of overlapping speech. 
To avoid this problem, we use time-frequency domain 
DOA (TFDOA) estimation, which was recently pro-
posed in [2]. TFDOA estimates the DOA for each 
time-frequency slot, instead of for each timeframe. 
As a result of the sparseness attribute of speech sig-
nals in the time-frequency domain, we can estimate 
multiple DOAs even if there are several speakers’ 
utterances in a timeframe. 

2.1.3   Direction of arrival clustering
Finally, we cluster the TFDOA information for 

speech-containing timeframes, which are estimated 
by DOA, to determine who is speaking when. To 
enable clustering even when the number of people in 
a meeting is unknown, we use an online clustering 
algorithm known as leader-follower clustering [7]. 
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Each cluster corresponds to one sound source, which 
should be a potential speaker. Probabilistic integra-
tion of the VAD result and TFDOA estimation result 
was also proposed in [2]. 

2.2   Vision technology
Vision-related nonverbal cues include the positions 

of people, face directions, head gestures, facial 
expressions, hand gestures, and postures. Among 
these, we have been working on automatic face pose 
tracking, head gesture recognition, and facial expres-
sion recognition. Our face pose tracker and its exten-
sion to facial expression recognition are introduced 
below. 

2.2.1   Face pose tracking
The importance of measuring face pose arises from 

the fact that it is a reasonable indicator of people’s 
gaze and direction of visual attention. Among the 
possible nonverbal messages/behaviors, eye gaze is 
especially important because it has various roles such 
as monitoring others, expressing one’s attitude/inter-
est, and regulating conversation flow [8]. However, 
gaze direction during natural conversation is difficult 
to measure directly. Therefore, face direction is often 
used as a reasonable alternative. However, it is more 
than just an alternative; by itself it is a useful indicator 
of people’s attention to others during meetings. In 
addition, the temporal changes in face direction indi-
cate head gestures such as nodding. Therefore, face 
direction is an important cue in analyzing meetings. 

To estimate the position and pose of people in face-
to-face meetings, we have developed a face pose 
tracker called STCTracker (sparse template conden-

sation tracker) [9]. This tracker was originally pro-
posed by Matsubara and Shakunaga [10] and we first 
applied it to conversation scene analysis [11]. Recent-
ly, we enhanced it into a more robust, accurate, and 
faster tracker for following multiple faces [9]. Fur-
thermore, we verified its performance in conversation 
scene analysis [12]. As reported in [12], the advan-
tages of STCTracker are its robustness against large 
head rotation, up to ±60º in the horizontal direction, 
and its speed: it can track multiple faces simultane-
ously in real time by utilizing a modern graphics 
processing unit. Furthermore, it can automatically 
build three-dimensional (3-D) face templates after 
initialization. 

A diagram of STCTracker is shown in Fig. 3. It 
consists of particle filtering and initialization. The 
particle filter used in STCTracker combines template 
matching with particle filtering. In contrast to tradi-
tional template matching, which assesses all pixels in 
a rectangular region, sparse template matching focus-
es on a sparse set of feature points within a template 
region, as shown in Fig. 4. The state of a template, 
which represents the position and pose of the face, is 
defined as a seven-dimensional vector consisting of 
2-DOF (degrees of freedom) translation on the image 
plane, 3-DOF rotation, a scale (we assume weak-per-
spective projection), and an illumination coefficient. 
The particle filter is used to sequentially estimate the 
posterior density of the template state, which is rep-
resented as a particle set. The weight of each particle 
is calculated based on the matching error between 
input images and the template, whose state is assigned 
by that particle—a higher weight is given to a particle 
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Fig. 2.   Block diagram of VAD. 
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with a smaller matching error. The particles with 
higher weights indicate the plausible position and 
pose of the target face. STCTracker has reasonable 
speed owing to the sparseness of the feature points 
and robustness owing to robust template matching 
combined with multiple-hypothesis generation/test-
ing by the particle filter framework. 

The initialization part creates a template for each 
person before tracking starts. First, the frontal face is 
detected. Next, feature points are detected over the 
detected face region, and active appearance model 
(AAM) fitting is conducted to create the shape model 
of the detected face, as shown in Fig. 4. Finally, a face 
model (i.e., face template) is built upon the extracted 
feature points with shape information.

2.2.2   Face expression recognition
We have been working on facial expression recog-

nition based on STCTracker in cooperation with the 
University of Tokyo [13], [14]. The key idea is an 
extension of the sparse template, called a variable 
intensity template (VIT), which can model the varia-
tion in image intensity depending on the facial 
expression by using the mixture of image intensity 
distributions depending on each facial expression 
category. For now, the target expressions are neutral, 
happy, angry, sad, and surprised. The main advantage 
of the VIT-based method is in its robustness against 
head pose variations. In a meeting, people often turn 
their heads to pay attention to others. Such motion 
yields significant changes in head pose. Therefore, 
our method is suitable for such a situation. 

2.3   Multimodal technology
So far, we have proposed a probabilistic framework 
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Fig. 3.   Diagram of STCTracker.
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Fig. 4.  �Face model (sparse template) used in STCTracker. (a) Feature points and (b) face shape obtained by AAM fitting. 
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for estimating the structure of conversations from 
pre-recorded multimodal data [15], as shown in Fig. 
5. The goal is to automatically discover who is 
responding to whom, when, and how, as well as who 
is talking to whom and who is listening to whom. 

First, the facial image of each participant is cap-
tured with a different camera, and the voice of each 
participant is recorded with a separate lapel micro-
phone. From the video, the head pose of each person 
is estimated with an offline version of STCTracker. 
Head gestures are also detected using the temporal 
sequence of head pose. From the audio data, the utter-
ance interval of each person is determined by a VAD 
technique that was developed especially for lapel 
microphones. Each participant is equipped with a 
label microphone so that his/her voice can be record-
ed separately from the others’ voices. Using these 
behavior measurements, we have developed a proba-
bilistic conversation model based on a dynamic 
Bayesian network that can represent the relationship 
among measured behaviors (head pose, gestures, and 
utterances), gaze directions, interaction structure, and 
conversation structures. Here, the gaze direction indi-
cates who is looking at whom or averting gazes from 
everyone. The interaction structure indicates who is 
responding to whom. The conversation structure indi-
cates typical patterns of message exchange among 
participants, including convergence (monologue), 
dyad-link (dialogue between two), and divergence 
(others). The conversation structures and gaze direc-
tions are estimated offline using a Markov chain 
Monte Carlo method. 

From the estimated conversation structures and 
gaze directions, we have proposed a novel measure 
for automatically quantifying the amount of interper-
sonal influence present in face-to-face conversations 

[16]. The basic idea is that the amount of influence is 
defined on the basis of the amount of attention paid to 
speakers in monologues and to persons with whom 
the participants interact with during dialogues. 
Experiments confirm that this measure reveals some 
aspects of interpersonal influence in conversations.

3.   Realtime multimodal system for  
conversation scene analysis

3.1   System overview 
We have developed a realtime system for analyzing 

group meetings that uses a novel omnidirectional 
camera-microphone system [17]. The goal is to auto-
matically discover the visual focus of attention, i.e. 
who is looking at whom, in addition to speaker dia-
rization, i.e., who is speaking and when. These are 
essential to describe the structure of conversations, 
such as who is talking to whom and who is listening 
to whom. This system features a novel table-top sens-
ing device, which consists of two cameras, each hav-
ing a pair of fisheye lenses and a microphone array. It 
can capture omnidirectional images and audio at the 
same time. From the omnidirectional images cap-
tured with the cameras, the positions and poses of 
people’s faces are estimated by STCTracker. Real-
time tracking is achieved by utilizing graphics pro-
cessing units. The face position/pose data is used to 
estimate the focus of attention in the group. Using the 
microphone array, robust speaker diarization is car-
ried out by VAD and by DOA estimation. We have 
also developed new 3-D visualization schemes for 
analyzing the results. Using two personal computers 
(PCs), one for vision and one for audio processing, 
the system runs at 27.1 frames per second on average 
for a five-person meeting.
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Fig. 5.   Flow of multimodal meeting analysis.
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To the best of our knowledge, this system is the first 
multimodal system to visually track not only face 
position, but also face pose in real time for group 
meeting analysis. 

3.2   System configuration
This system targets meeting scenes, as shown in 

Fig. 6, and displays realtime output on a PC display, 
as described in section 3.1. As shown in Fig. 7, this 
system consists of three parts: (a) visual processing, 
(b) audio processing, and (c) meeting processing. The 
visual processing part consists of our new omnidirec-
tional camera system (Fig. 8) and face tracking sys-
tem using the image output by the camera system. For 

face tracking, we use STCTracker (described in 
2.2.1). The audio processing part uses a microphone 
array to capture the voices of the participants. Robust 
speaker diarization estimation is performed. Diariza-
tion is achieved by our method described in section 
2.1. Finally, the meeting processing part determines 
the utterance status (speaking or silent) of each meet-
ing participant by cross-referencing the visual and 
audio information obtained in parts (a) and (b). More-
over, gaze direction (focus of attention) is estimated 
based on the positions and directions of faces. This 
information is displayed on a monitor using our new 
visualization schemes.
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(a) Visual processing part

(b) Audio processing part

Face pose tracking 

Microphone
array

Speaker diarization Speaker
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Focus of
attention
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Fig. 7.   System diagram.

Fig. 6.   Meeting scene. The display at the front shows the result of realtime processing.
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3.2.1   Vision processing part
Our omnidirectional camera-microphone system is 

shown in Fig. 8. The camera part of the system con-
sists of two cameras with fisheye lenses, which are 
facing in (180°) opposite directions. Since each fish-
eye lens covers a hemispherical region, the camera 
system could capture a nearly spherical region. How-
ever, our system captures only a horizontal strip, as 
shown in Fig. 9, so meeting participants are just cov-
ered by the image; this minimizes the transmission 
rate and allows high processing rates. 

Using the images obtained with the omnidirectional 
cameras, the system estimates the face position and 
pose of each meeting participant in real time using 
STCTracker. Figure 9 shows an example of tracking 
results in an actual screenshot of the PC display dur-
ing a meeting. The green meshes illustrate the face 
tracking results.

3.2.2   Audio processing part
Speaker diarization is done based on the audio sig-

nals observed by a microphone array, as shown in 

Fig. 8. The array consists of three tiny omnidirec-
tional microphones placed at the vertices of a triangle 
with 4-cm sides and is located atop the camera unit. 
The VAD part is written in C and the TFDOA estima-
tion and DOA clustering parts are implemented in 
MATLAB6.5. An example of diarization is shown in 
Fig. 9. The red dots along the axes indicate the DOA 
of the voice.

3.2.3   Meeting processing part
The meeting processing part uses the outputs of the 

visual processing and audio processing parts. Cur-
rently, our system implements utterance detection 
and focus of attention estimation. The presence/
absence of utterances by each person is determined 
by combining the DOAs of speech from the audio 
processing part and the face positions from the vision 
processing part. This process is a data association 
problem; it aims to find the visual source responsible 
for utterances or noise. Here, we simply tackle this 
problem by the nearest neighbor rule with threshold-
ing. The face position/pose from the face tracker is 
used to estimate the visual focus of attention in the 
group. More specifically, this article focuses on the 
discretized gaze direction of each person, i.e., look-
ing at one person among all the people, or not looking 
at any one.

3.3   Visualization
To visualize the conversation scenes for meeting 

observers, who could be remote meeting participants 
in a teleconferencing or users of meeting archive sys-
tems, we implemented two visualization schemes 
with a manually configurable interface, as shown in 

Fig. 8.   Omnidirectional camera-microphone system.

Fig. 9.   Screenshot of system monitor displaying face tracking and VAD results.
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Fig. 10. Cylindrical visualization of panoramic imag-
es and the relative position of each meeting partici-
pant (indicated by a circle) are shown in Fig. 10(a), 
which also shows the approximate field of view as 
(blue) translucent triangles; overlapping fields of 
views indicate where people pay attention to each 
other. Moreover, the voice activity of each participant 
is displayed by the red dot in each person’s circle. An 
example of the output of the second visualization 
scheme, called piecewise planar representation, is 
shown in Fig. 10(b); the face image of each person is 
mapped to a planar surface, which is arranged to indi-
cate the relative positions of the participants. This 
visualization provides the viewers with larger face 
images, which enables better understanding of the 
individual’s expressions, while still clearly indicating 
their interpersonal positioning and interactive behav-
iors. In addition to the field of view and voice activity 
included in Fig. 10(a), Fig. 10(b) shows the dis-
cretized gaze direction of each person by an arrow 
and the focus of attention, people who are attracting 
the gaze of more than a person, by one or more cir-
cles. 

For both visualization schemes, our system offers a 
maneuverable interface controlled by a 3-D mouse. 
With this device, users can freely and intuitively 
manipulate their viewpoints, as shown in Figs. 10(c). 
The rotation operation can choose the person and the 
zooming operation can control the focus (performed 
by pushing/pulling the knob); from one-person (Fig. 

10(d)) to everyone (Fig. 10(b)). As a result of the 
high-resolution imaging provided by our new system, 
zoom-up face images retain sufficient details.

4.   Conclusion

This article overviewed audio-visual technologies 
for understanding human communication scenes 
developed in the Media Information Laboratory of 
NTT Communication Science Laboratories. In addi-
tion to the individual component technologies, we 
have been focusing on multimodal integration of 
audio and visual technologies for fully capturing 
human nonverbal behaviors, which have been used as 
cues for human-human communications. As the ini-
tial step, this article introduced our realtime system 
for meeting analysis. Although this system is cur-
rently at a primitive level, it has the potential to open 
up a new field, realtime multimodal meeting analysis, 
which is an important key to a wide range of applica-
tions, such as teleconferencing, multimodal meeting 
archiving and browsing, automatic creation of meet-
ing minutes, and social robot/agent systems. 

Future work includes the following. First, we need 
to increase the accuracy and robustness of each tech-
nique including face pose tracking and voice activity 
detection. Second, it is important to extend the range 
of recognizable nonverbal behaviors. Possible targets 
include spontaneous facial expression, direct mea-
surement gaze directions from video, postures, ges-

(a) (b)

(c) (d)

Fig. 10.   �Visualization of conversation scenes. (a) Cylindrical visualization, (b) piecewise planar visualization, (c) viewpoint 
maneuver to middle range, and (d) viewpoint maneuver to close-up range.
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tures, and prosody. Third, using measured low-level 
human behavior, it is important to move forward to 
discover the high-level state of meetings such as the 
roles of participants, conversation structures, dia-
logue acts, and social relationships among people. 
The low-level behavior data and high-level states of 
the meeting and its participants are useful for study-
ing human science including cognitive neuroscience, 
psychologies, and sociologies. Finally, developing 
applications such as telecommunication systems and 
social agents/robots is an important research area. We 
believe that such applications have the potential to 
overcome communication barriers caused by time 
and space and to change our life and business styles.
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