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1.   Introduction

Since the 1995 Kobe Earthquake, many road bridg-
es in Japan have been reinforced (Table 1). The main 
seismic reinforcement method used for large bridges 
has been seismic isolation, which increases the vibra-
tion period and attenuates the vibration amplitude, 
thereby reducing the inertial force acting on upper 
structures. As a result, the relative displacement 

between superstructure and substructure has increased 
and superstructures move not only in the direction of 
the bridge’s axis (axial direction), but also in the 
direction perpendicular to it (perpendicular direc-
tion), as shown in Fig. 1. There are concerns that 
conduits attached to existing bridges, which were not 
designed to accommodate large displacements in two 
directions, will be damaged and that this could lead to 
cable damage and service disruptions. The type of 
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Table 1.   �Earthquake-proofing measures plan for emergency transportation roads.
*Number of bridges along emergency transportation roads (as of Mar. 2008)

*Adapted from webpage of Ministry of Land, Infrastructure, Transport and Tourism

Overall emergency transportation roads (approx. 50,000) 

Roads between prefectural capitals

Danger of damage

Danger of collapse

Measures completed or unnecessary

Approx. 16% (approx. 8000)

0

Approx. 14% (approx. 7000)

Approx. 4% (approx. 2000)

Approx. 70% (approx. 35,000)

Other roads
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damage suffered by a conduit attached to a seismi-
cally isolated bridge is schematically illustrated in 
Fig. 2. 

The need to develop earthquake-proofing technolo-
gies became urgent after the severe damage that 
occurred to telecommunication conduits in the 2007 
Chuetsu-oki Earthquake. We have defined the defor-
mation capabilities required of bridge-attached con-
duits and examined ways to achieve them through an 
analysis of the seismic behavior of seismically iso-
lated bridges.

2.   Existing bridge-attached conduits

Existing facilities have expansion joints at places 
where relative displacement occurs, such as at abut-
ments, as shown in Fig. 3. Even though the expansion 

and contraction specifications were designed to cope 
with thermal deformation and seismic movement, 
only one displacement direction (axial) was consid-
ered and the maximum displacement considered was 
only 10 cm, which is less than the displacement 
expected for a seismically isolated bridge. Therefore, 
there is concern that attached conduits and the cables 
inside them will be damaged by perpendicular dis-
placement of the superstructure when the distance 
between the abutment and conduit support is short or 
when conduits pass through an aperture at the end of 
a bridge beam.

3.   Analysis of seismic behavior of  
seismically isolated bridge

We have examined the expected horizontal dis-
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Fig. 1.   �Earthquake-induced perpendicular displacement 
of a seismically isolated bridge.

Fig. 3.   Existing bridge-attached facilities.
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Fig. 2.   Damage to a conduit attached to a seismically isolated bridge.
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placement of 26 bridges that have rubber supports 
where telecommunication conduits are attached. We 
found that seismically isolated bridges were designed 
to withstand a displacement of approximately 30 cm 
in the axial direction and also to move in the perpen-
dicular direction. Among the bridges we examined, 
the maximum displacement design value was 60 cm. 
We also performed a dynamic analysis of the seismic 
behavior of the bridges using two different earth-
quake models for large-scale earthquakes occurring 
at a plate boundary and for inland earthquakes. The 
results showed that relative displacements of up to 60 
cm in the axial direction and 40 cm in the perpen-
dicular direction occur at abutments. Taking these 
values as targets, we examined countermeasures that 
could protect cables and ensure the continued avail-
ability of telecommunication services. 

4.   Seismic behavior of  
existing bridge-attached facilities

We experimentally verified the behavior of existing 
attached conduits when seismically isolated bridges 
were displaced by a large amount, corresponding to 
an earthquake.

4.1   Axial displacement test
To verify the deformation characteristics and 

behavior of conduits and expansion joints under large 
displacements up to failure, we performed static load 
tests (Fig. 4). The abutment side and the support fix-
ture side were both set as fixed, and the displacement 
load was controlled by a hydraulic jack. An optical 
fiber was placed inside the conduit to measure the 
transmission loss after failure. The average frictional 
tension was loaded onto the optical fiber. As the dis-
placement increased, the conduit (polyvinyl pipe) 
bent, and when the displacement reached 20 cm, a 
steel pipe pierced the polyvinyl pipe at the expansion 
joint and destroyed the joint. In some cases, the 
cable’s coating was damaged. Therefore, if relative 
displacements during an earthquake are expected to 
be more than 12 cm, the expansion and contraction 
lengths need to be increased. 

4.2   Perpendicular displacement test
We also investigated the behavior of an attached 

conduit and expansion joint under perpendicular dis-
placement through a static load test (Fig. 5). The 
transmission loss of the optical cable was also mea-
sured in this test. We found that a polyvinyl pipe bent 
by a large amount, so it could follow perpendicular 

displacement of a girder to some extent. The expan-
sion joint, which was broken by the bending force, 
tended to be the weak point. Moreover, the sharply 
rising bending force and tension broke the optical 
fiber. The allowable displacement in the perpendicu-
lar direction is inversely proportion to the distance 
between the expansion joint and the first support fix-
ture. 

5.   Countermeasures and  
earthquake-resistance evaluation test

We considered the composition of facilities that 
would be able to accommodate a large displacement 
in both the axial and perpendicular directions of a 
bridge and we also considered how such facilities 
could be constructed using commercially available 
materials. To prevent damage from our assumed dis-
placements, we made a test rig consisting of corru-
gated FEP (fluorinated ethylene propylene) pipe and 
an expansion section able to accommodate a large 
degree of movement (Fig. 6). We also considered 
countermeasures based on the use of slit corrugated 
FEP pipe for existing attached conduits.

To verify the applicable area of the countermea-
sures, we performed repeated deformation tests using 
a single-axis shaking table. Axial and perpendicular 
displacements were applied incrementally in 10-cm 

Fig. 4.   Axial displacement test.
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Fig. 5.   Perpendicular displacement test.
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steps until the conduit broke, and the transmission 
loss of the optical cable was also measured.

In the axial uniaxial shaking test, the expansion sec-
tion managed to absorb displacements of up to 60 cm 
in both the contraction and expansion directions and 
there was no damage to either the pipe or cables.

The perpendicular uniaxial shaking test results 
showed that our countermeasures for preventing con-
duit and cable damage worked. The range in the per-
pendicular direction that our countermeasures can 
handle is shown in Fig. 7. According to previous 

research on seismically isolated bridges, the distance 
between joint and beam end aperture is usually more 
than 30 cm. Thus, we confirmed that these counter-
measures can protect cables in the case of limited 
bending angles that currently cause transmission 
faults in almost all areas.

6.   Performance evaluation test for  
actual earthquakes

We investigated the reliability of our countermea-
sures by using a biaxial shaking table and actual 
seismic records. On the basis of a dynamic analysis of 
seismically isolated bridges, we decided that the dis-
placements to use in the shaking test should corre-
spond to the seismic wave of an inland earthquake 
equivalent to the 1995 Kobe Earthquake, which was 
estimated to cause the largest beam displacement to 
date. The objectives of the test were to determine 1) 
how existing attached facilities are destroyed and 
how the breakage leads to transmission failure and 2) 
the behavior of countermeasures under actual earth-
quake conditions.

Three specimens were made and tested for each 
case to determine the damage to the conduit and the 
transmission loss of the cable inside it. 

In the case of existing bridge-attached facilities, the 
expansion joint was withdrawn when the displace-
ment reached 20 cm in the tensile direction regardless 
of the support distance. The exposed cable was 
whipped by repeated crushing of the two ends of the 
withdrawn conduits and finally fractured. The left 
photograph in Fig. 8 shows an example of a joint 

Fig. 6.   Countermeasures.
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Fig. 7.   Application area.
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damaged by the crushing of a withdrawn conduit. The 
right photograph shows an example of a sharply bent 
and fractured cable resulting from a withdrawn con-
duit.

On the other hand, there was no damage to a con-
duit to which our countermeasures were applied or to 
the cable inside it, which demonstrates the effective-
ness of our countermeasures for protecting telecom-
munication services from disruption even when 
bridges are severely shaken by an earthquake. A shak-
ing test performed on a conduit with our countermea-
sures is shown in Fig. 9.

7.   Future plans

We intend to investigate 1) the seismic performance 
of the countermeasures when multiple conduits are 
attached to a bridge, 2) behavior of a fireproof con-

duit, 3) long-term reliability, and 4) workability in 
trials before the countermeasures are deployed in a 
field (scheduled for 2009).
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Fig. 8.   Shaking test for existing bridge-attached conduit. Fig. 9.   Shaking test for countermeasure technologies.
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