
� NTT Technical Review

1. Introduction

In the design of system-on-a-chip (SoC) devices, it
is extremely important to design so that the hardware,
which handles specialized processing, and the soft-
ware running on the microprocessor, operate coop-
eratively. In other words, the design process must also
be cooperative. How can this be tested?

The microprocessor operates according to what is
written in its program (software). On the other hand,
the dedicated processing circuits process data con-
tinuously according to how the hardware has been
designed and a clock signal. Thus, the operation of
the two must be checked to ensure that they do not
cause a conflict, mismatch, deadlock, or other type of
performance drop. This is cooperative design evaluation.

The evaluation results can affect the system archi-
tecture greatly, so such an evaluation must be done
from the initial stages and from the top level of
design. However, at the top-level design stage, there
is no actual hardware. It would be nice to build an
overall prototype including both the microprocessor
and dedicated circuits, put them together and test
them, but development usually cannot wait for this.
Systems being implemented as SoCs have recently

become extremely complex, so that even building or
rebuilding a single prototype can take several weeks
or months. For this reason, it has become necessary to
simulate the hardware together with the system soft-
ware before prototyping it; in other words, one must
perform a hardware/software co-design simulation.

2. Virtual hardware

To implement co-design simulation, we need a
simulator for virtual hardware. Physical hardware
operates with a clock signal for input and output to
the dedicated circuits so the processor can read from
and write to it, but virtual hardware does not have a
physical clock. Instead, attention must be paid to the
sequencing and dependencies of reading and writing
and to the input and output between the processor and
dedicated circuits, and the simulator must be built to
maintain these relationships.

Before the design of the dedicated circuits is com-
plete, one does not know how many clock cycles will
be required for these circuits to complete their opera-
tion. However, the correct sequencing and dependen-
cies for reading and writing are correctly coded in the
virtual hardware, so the virtual hardware can respond
to the software behavior without conflict. This makes
co-design simulation possible from the top-level
design stages.

† NTT Microsystem Integration Laboratories
 Atsugi-shi, 243-0�98 Japan

Cooperative Hardware/software
Design Technology
Takashi Aoki†, Takuya Ohtsuka, Koji Yamazaki,
Shigehiko Onishi, and Akira Onozawa

Abstract
In this article, we introduce a hardware/software co-design simulation method for testing the coopera-

tive design of hardware and software for system-on-a-chip (SoC) devices. For SoCs, which incorporate
dedicated processing circuits and a processor, combined testing of the software running on the processor
and the operations of the dedicated circuits must be done from the initial design stages in order to reduce
the amount of redesign and the turnaround time, i.e., the number of person-hours of work required. Our
cooperative simulation method uses virtual hardware. We discuss its effectiveness by referring to real
examples.

Feature Articles: System LSI Design for Broadband
Optical Access Network Systems

Vol. 9 No. 3 Mar. 2011 2

Feature Articles

3. Issues being addressed

We have applied this type of co-design simulation
using virtual hardware to the evaluation of SoC
designs for optical access systems. As a result, we
have confirmed the usefulness of the method. The
new process is shown in Fig. 1 together with the con-
ventional design process. The lower half of the figure
shows the conventional design process centered on
hardware. Here, the hardware was the only specifica-
tion to achieve. However, in hardware/software co-
design, which allows cooperative testing with the
software, part of the specification is achieved with
software. The hardware/software co-design process
can handle a wider specification range than the con-
ventional design process. Moreover, whereas the
conventional design process creates a hardware
netlist, the cooperative design process creates two
netlists—one for the dedicated circuits and another
that connects the processor and dedicated circuits—
and software object code that controls the processor’s
behavior. Therefore, Specification and Netlist are
grayed out in the lower half of Fig. � because they
cover different ranges to those in the upper half.

The dedicated circuits are designed according to
the conventional hardware design process: they
become more detailed in three stages from specifica-
tions to functional design and register transfer level
(RTL) design. Software cooperative testing (verifica-
tion) can be done at each of these three stages by

using co-design simulation with virtual hardware.
We started by building the virtual hardware (left-

most green box in Fig. �.) for the initial stage (speci-
fication design). This allowed early verification of the
SoC software.

Then, at the intermediate stage (functional design),
we addressed the hardware transaction-level design
(second green box). This can be simulated several
times faster than when designing in detail to the RTL
level.

Finally, at the RTL design stage, we built a mecha-
nism called a transactor (third green box) into the
system for sections connecting the dedicated circuits
with the processor. This enables precise final verifica-
tion of the interfaces between hardware and software
in the SoC.

4. Construction of virtual hardware

We verify the software at the specification design
stage with the goal of determining aspects such as
whether adequate performance is achieved and
whether performance will drop owing to interference
with the dedicated circuits. The software is not exe-
cuted independently, but loaded on the original SoC
architecture, which includes both the processor and
dedicated circuits. Thus, we have built virtual hard-
ware that simulates the entire SoC, as shown in
Fig. 2.

The key to building virtual hardware is the separate

* Netlist: A netlist describes the connectivity of an electronic design.

Conventional design process

Virtual

hardware

Transaction level

modeling

Cooperative hardware/software design

Conventional design

centered on hardware

Software

↓
Transactor

↑
RTL

Software

Dedicated

circuits

Specification

Specification

Breadboard

test

RTL

simulation

Verification Verification Verification

Hardware

specifications

Hardware
functional

design

RTL

design

Logic
synthesis
and layout

RTL simulation and

breadboard test

Object

 code

Netlist

Netlist

Software

↓

Fig. 1. New design process that allows cooperative testing with software.

3 NTT Technical Review

Feature Articles

parts for software and dedicated circuits, which are
where the processing that defines the functional char-
acteristics of the SoC takes place. For our optical-
access SoC, these characteristics were the ability to
interface with sophisticated, high-speed communica-
tion lines. The specifications for these components
are complex, so they were expressed not only in
documents, but also as source code in the C program-
ming language. To ensure that the implementation
was faithful to the specifications, we built the dedi-
cated circuit part of the virtual hardware by directly
using this C source code as far as possible.

The source code includes both the software that
will be loaded by the processor in the SoC and the
software representing the dedicated circuits. Com-
munication between them uses registers, which cre-
ate the correspondence between variables in the
software and variables for the dedicated circuits, so
the address-mappings for these registers must be
managed. The mechanism of communication between
software and a dedicated circuit conducted via a reg-
ister is shown in Fig. 2. When the software side writes
to address A, the dedicated circuit side detects it as
being written at address 0xd305… (in hexadecimal).
Because the dedicated circuit is always processing,
the influence of the write will sooner or later be writ-
ten at address 0xd307…, which is equivalent to
Address B on the software side. The software side
reads values from Address B according to the execu-
tion order and conditional judgment. The dedicated

circuit reads the value that was written earlier to
Address B, and, as a result of the dedicated circuit
procedure, its behavior when it reads Address B
reflects the software side.

The number of these registers is generally very
large. Most of the specification is related to these
registers, so any updates to the specifications can
involve a significant amount of rewriting in the vir-
tual hardware. This results in additional design work,
so we used data structures, which allow us to manage
all of the registers at once and make it easy to apply
updates to the specification.

This approach can be generalized, decreasing the
amount of time required from confirmation of the
specifications to system-level operation. For the cur-
rent project, we were able to detect routines that were
performing inadequately several months before
beginning verification of the physical hardware.

5. Transaction-level design

In the same way that software performance can be
checked using virtual hardware, the dedicated circuits
can be simulated at the functional design stage. This
simulation is faster than RTL-stage simulation, but it
must be done using transaction level modeling (TLM)
to describe the transaction-level design.

In the past, for functional design simulations, each
of the lines between modules would be simulated
individually and in complete detail, down to individual

/* set inputs */
....
sort_start = 1;
....

/* read outputs */
for(i=0; i < max; i++){
 a = sorted_que[i];

}

/* read input */
....
flg_sort = 1;
....

/* run */
if(flg_sort == 1){
 sort();
}

Software

Dedicated
circuits

Source
code

Register

Sequential

...

Signal

Parallel
processing

Software

Processor

Bus

Dedicated
circuits

A:_0xd305..01 B:_0xd307….

Write to address A Read address B

Detect at 0xd305..
At 0xd307..

Memory

* http: //www.synopsys. com/Community/Interoperability/SystemLevelCatalyst/Pages/MVaST.aspx

Fig. 2. Virtual hardware.

Vol. 9 No. 3 Mar. 2011 4

Feature Articles

clock cycles. This resulted in a number of problems.
First, a lot of work was required to complete the
detailed design before simulation could begin; more-
over, component redesign because of interference
with other blocks could have a major effect on the
design schedule [�]. Second, a detailed simulation
could not be executed quickly and consumed much
time. Third, the test coverage was difficult to manage [2].

To resolve these difficulties, we used SystemC [3]
TLM to structure the design file for the dedicated
circuit section. At the functional design stage, testing
must verify points where data is exchanged between
blocks. The TLM interface between blocks A and B
is compared with the RTL interface in Fig. 3. When a
block passes the results of its processing to another
block, the procedure can be very long, as in the RTL
case on the left. However, this procedure can become
very simple, as shown on the right side, if the
exchange is rewritten as a transaction. A transaction
is the core action, such as the start or confirmation of
a transmission or reception. The events handled in a
simulation using TLM are arranged beforehand, so
simulation can be done at high speed. When TLM is
used, descriptors for the lines connecting blocks are
much shorter, and this effectively reduces the amount
of preparation work for simulation. Overall, the
amount of descriptor code was about one-tenth of that
for RTL, and the simulation executed about �00 times
as fast as the RTL simulation.

6. Built-in transactors

Completing an RTL design of the dedicated-circuit
section enables precise simulations to be done in
block units, but problems arise when cooperative
simulation is performed. The processor in the virtual
hardware does not have actual signal lines, so the
RTL for the dedicated circuit section cannot be con-
nected to the virtual hardware as it is.

Thus, we built transactors into the virtual hardware,
as shown in Fig. 4. Transactors are composed of
libraries provided by the existing simulation infra-
structure [4]. We used library functions to code the
transactor to monitor accesses to the bus by the RTL
of the dedicated circuits. When an access is detected,
a function updates the register value at the appropri-
ate address. Figure 4 shows a transactor connecting
two simulators: the lower one simulates the dedicated
circuits with cycle accuracy and the upper one simu-
lates the software-equipped processor with fast TLM.
The grey areas labeled TL (transaction level) mean
that a TL connection is used when these areas are
simulated. In the processor and bus in this area, when
each part performs communications with the other
part, the performance is set using a TL write. The TL
connection enables communications to be performed
with transaction between connected parts (models)
and leads to high-speed simulation. On the other
hand, the area of dedicated circuits is written to
enable simulation with more detailed cycle accuracy.
There is no way to connect directly between an area
that uses TL connection when simulated and another

RTL interface

CLK125

read(addr) write(addr, wdata)

Block A Block B Block A Block B

Signal waveform

TLM interface

Communication

Processing

while(1)
{
 write()

}

while(1)
{
 read()

}

Transaction

clk125 clk125

read()
write()

Read Write

D_RAMCPE
RST_PON_N
HRDATA
HREADY
HI2RDATA
PWDATA2
PWRITE2
PREAD2
PADDR2
LOCALTIME

Fig. 3. TLM interface.

5 NTT Technical Review

Feature Articles

area simulated with cycle accuracy because the input/
output signal formats are completely different. That is
why a transactor plays the role of a mutual conversion
function for the two communication methods.

With the earlier approach, we built a prototype
board, reproduced the RTL on a field-programmable
gate array (FPGA), and loaded the software onto the
processor to evaluate the whole system. The data for
writing the FPGA was created using computer-aided
design, and this also required several weeks of prepa-
ratory work. In comparison, using the new method,
the design for this project required only five person-
days of preparation before evaluation was started.
The method cannot replace all of the testing done
with a prototype board, such as realtime signal pro-
cessing, but final testing can be started several weeks
earlier; the saved time is the time that would have
been required to prepare the data for rewriting the
board.

7. Cooperative design technology in the future

In this article, we introduced an example of apply-
ing cooperative design methods to the design of an
SoC for optical access. Through this example, we

showed that system-level cooperative simulation, at a
level of precision appropriate and relevant for design
stages as they progress, is possible for the dedicated
circuit components, from top-level design to the final
processes.

In the future, it will become more important to do
multistage cooperative simulation, from the begin-
ning and in accordance with the design stages, when
designing SoCs. The future possibilities enabled by
this sort of design methodology are not limited to
SoCs. Large-scale systems of even more complexity
will fall into the scope of this research and we are
taking on this new challenge.

References

[�] CoMET.
 http://www.synopsys.com/Systems/VirtualPrototyping/Pages/VP-

Tools.aspx
[2] K. Yamazaki, T. Aoki, I. Harada, and A. Onozawa, “High-level Verifi-

cation Environments Using Redundant Pattern Compression Meth-
ods,” IEICE Conf. Proc., Vol. 2009, p. 53 (in Japanese).

[3] OSCI (Open SystemC Initiative).
 http://www.systemc.org/home/
[4] Carbon SoC Designer (in Japanese).
 http://www.carbondesignsystems.co.jp/products_socd.asp

Read Write

read(addr) write(addr, wdata)

Software TLM fast simulation

Cycle-accuracy simulation

Processor

Bus

Transactor

Dedicated circuits

TL: transaction level

Memory

TL

TL

TL

Fig. 4. Built-in transactors.

Vol. 9 No. 3 Mar. 2011 �

Feature Articles

Takashi Aoki
Research Engineer, Design Technology

Research Group, Ubiquitous Interface Laborato-
ry, NTT Microsystem Integration Laboratories.

He received the B.S. and M.S. degrees in
applied physics from Tokyo Institute of Technol-
ogy in �987 and �989, respectively. He joined
NTT in �989 and studied LSI design and network
design. He is a member of the Information Pro-
cessing Society of Japan (IPSJ) and the Physical
Society of Japan.

Shigehiko Onishi
Research Engineer, Ubiquitous Interface Labo-

ratory, NTT Microsystem Integration Laborato-
ries.

He received the B.E. and M.E. degrees from
Yokohama National University, Kanagawa, in
�99� and �993, respectively. He joined NTT in
�993. Since then, he has been working on R&D
of LSIs, speech recognition, video coding, and
high-performance computing. He is a member of
the Institute of Electronics, Information and
Communication Engineers (IEICE) and the
Acoustical Society of Japan.

Takuya Ohtsuka
Research Engineer, Design Technology

Research Group, Ubiquitous Interface Laborato-
ry, NTT Microsystem Integration Laboratories.

He received the B.E. and M.E. degrees in sci-
ence and engineering from Waseda University,
Tokyo, in �997 and �999, respectively. He joined
NTT in �999.

Koji Yamazaki
Research Engineer, Design Technology

Research Group, Ubiquitous Interface Laborato-
ry, NTT Microsystem Integration Laboratories.

He received the B.S. degree in environmental
information science from Keio University, Kana-
gawa, and the M.S. degree in interdisciplinary
information science from the University of
Tokyo in 2000 and 2004, respectively. He joined
NTT in 2004. Since then, he has been working on
R&D of LSIs and related CAD systems. He is a
member of IPSJ.

Akira Onozawa
Senior Research Engineer, Supervisor, Ubiqui-

tous Interface Laboratory, NTT Microsystem
Integration Laboratories.

He received the B.E. and M.E. degrees in elec-
tronic communication engineering and the Ph.D.
degree in information science all from Waseda
University, Tokyo, in �983, �985, and 2002,
respectively. He joined NTT in �985. Since then,
he has been working on R&D of LSIs and related
CAD systems. He is a member of the Association
of Computing Machinery, IEEE, IEICE, and
IPSJ.

