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1.   Introduction

In the design of system-on-a-chip (SoC) devices, it 
is extremely important to design so that the hardware, 
which handles specialized processing, and the soft-
ware running on the microprocessor, operate coop-
eratively. In other words, the design process must also 
be cooperative. How can this be tested?

The microprocessor operates according to what is 
written in its program (software). On the other hand, 
the dedicated processing circuits process data con-
tinuously according to how the hardware has been 
designed and a clock signal. Thus, the operation of 
the two must be checked to ensure that they do not 
cause a conflict, mismatch, deadlock, or other type of 
performance drop. This is cooperative design evaluation.

The evaluation results can affect the system archi-
tecture greatly, so such an evaluation must be done 
from the initial stages and from the top level of 
design. However, at the top-level design stage, there 
is no actual hardware. It would be nice to build an 
overall prototype including both the microprocessor 
and dedicated circuits, put them together and test 
them, but development usually cannot wait for this. 
Systems being implemented as SoCs have recently 

become extremely complex, so that even building or 
rebuilding a single prototype can take several weeks 
or months. For this reason, it has become necessary to 
simulate the hardware together with the system soft-
ware before prototyping it; in other words, one must 
perform a hardware/software co-design simulation.

2.   Virtual hardware

To implement co-design simulation, we need a 
simulator for virtual hardware. Physical hardware 
operates with a clock signal for input and output to 
the dedicated circuits so the processor can read from 
and write to it, but virtual hardware does not have a 
physical clock. Instead, attention must be paid to the 
sequencing and dependencies of reading and writing 
and to the input and output between the processor and 
dedicated circuits, and the simulator must be built to 
maintain these relationships.

Before the design of the dedicated circuits is com-
plete, one does not know how many clock cycles will 
be required for these circuits to complete their opera-
tion. However, the correct sequencing and dependen-
cies for reading and writing are correctly coded in the 
virtual hardware, so the virtual hardware can respond 
to the software behavior without conflict. This makes 
co-design simulation possible from the top-level 
design stages.
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3.   Issues being addressed

We have applied this type of co-design simulation 
using virtual hardware to the evaluation of SoC 
designs for optical access systems. As a result, we 
have confirmed the usefulness of the method. The 
new process is shown in Fig. 1 together with the con-
ventional design process. The lower half of the figure 
shows the conventional design process centered on 
hardware. Here, the hardware was the only specifica-
tion to achieve. However, in hardware/software co-
design, which allows cooperative testing with the 
software, part of the specification is achieved with 
software. The hardware/software co-design process 
can handle a wider specification range than the con-
ventional design process. Moreover, whereas the 
conventional design process creates a hardware 
netlist, the cooperative design process creates two 
netlists—one for the dedicated circuits and another 
that connects the processor and dedicated circuits—
and software object code that controls the processor’s 
behavior. Therefore, Specification and Netlist are 
grayed out in the lower half of Fig. � because they 
cover different ranges to those in the upper half.

The dedicated circuits are designed according to 
the conventional hardware design process: they 
become more detailed in three stages from specifica-
tions to functional design and register transfer level 
(RTL) design. Software cooperative testing (verifica-
tion) can be done at each of these three stages by 

using co-design simulation with virtual hardware. 
We started by building the virtual hardware (left-

most green box in Fig. �.) for the initial stage (speci-
fication design). This allowed early verification of the 
SoC software.

Then, at the intermediate stage (functional design), 
we addressed the hardware transaction-level design 
(second green box). This can be simulated several 
times faster than when designing in detail to the RTL 
level. 

Finally, at the RTL design stage, we built a mecha-
nism called a transactor (third green box) into the 
system for sections connecting the dedicated circuits 
with the processor. This enables precise final verifica-
tion of the interfaces between hardware and software 
in the SoC.

4.   Construction of virtual hardware

We verify the software at the specification design 
stage with the goal of determining aspects such as 
whether adequate performance is achieved and 
whether performance will drop owing to interference 
with the dedicated circuits. The software is not exe-
cuted independently, but loaded on the original SoC 
architecture, which includes both the processor and 
dedicated circuits. Thus, we have built virtual hard-
ware that simulates the entire SoC, as shown in 
Fig. 2.

The key to building virtual hardware is the separate 

* Netlist: A netlist describes the connectivity of an electronic design. 
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Fig. 1.   New design process that allows cooperative testing with software.
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parts for software and dedicated circuits, which are 
where the processing that defines the functional char-
acteristics of the SoC takes place. For our optical-
access SoC, these characteristics were the ability to 
interface with sophisticated, high-speed communica-
tion lines. The specifications for these components 
are complex, so they were expressed not only in 
documents, but also as source code in the C program-
ming language. To ensure that the implementation 
was faithful to the specifications, we built the dedi-
cated circuit part of the virtual hardware by directly 
using this C source code as far as possible.

The source code includes both the software that 
will be loaded by the processor in the SoC and the 
software representing the dedicated circuits. Com-
munication between them uses registers, which cre-
ate the correspondence between variables in the 
software and variables for the dedicated circuits, so 
the address-mappings for these registers must be 
managed. The mechanism of communication between 
software and a dedicated circuit conducted via a reg-
ister is shown in Fig. 2. When the software side writes 
to address A, the dedicated circuit side detects it as 
being written at address 0xd305… (in hexadecimal). 
Because the dedicated circuit is always processing, 
the influence of the write will sooner or later be writ-
ten at address 0xd307…, which is equivalent to 
Address B on the software side. The software side 
reads values from Address B according to the execu-
tion order and conditional judgment. The dedicated 

circuit reads the value that was written earlier to 
Address B, and, as a result of the dedicated circuit 
procedure, its behavior when it reads Address B 
reflects the software side.

The number of these registers is generally very 
large. Most of the specification is related to these 
registers, so any updates to the specifications can 
involve a significant amount of rewriting in the vir-
tual hardware. This results in additional design work, 
so we used data structures, which allow us to manage 
all of the registers at once and make it easy to apply 
updates to the specification. 

This approach can be generalized, decreasing the 
amount of time required from confirmation of the 
specifications to system-level operation. For the cur-
rent project, we were able to detect routines that were 
performing inadequately several months before 
beginning verification of the physical hardware.

5.   Transaction-level design

In the same way that software performance can be 
checked using virtual hardware, the dedicated circuits 
can be simulated at the functional design stage. This 
simulation is faster than RTL-stage simulation, but it 
must be done using transaction level modeling (TLM) 
to describe the transaction-level design. 

In the past, for functional design simulations, each 
of the lines between modules would be simulated 
individually and in complete detail, down to individual 

/* set inputs */
....
sort_start = 1;
....

/* read outputs */
for(i=0; i < max; i++){
  a = sorted_que[i];
  ....
}

/* read input */
....
flg_sort = 1;
....

/* run */
if(flg_sort == 1){
  sort();
}
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Fig. 2.   Virtual hardware.
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clock cycles. This resulted in a number of problems. 
First, a lot of work was required to complete the 
detailed design before simulation could begin; more-
over, component redesign because of interference 
with other blocks could have a major effect on the 
design schedule [�]. Second, a detailed simulation 
could not be executed quickly and consumed much 
time. Third, the test coverage was difficult to manage [2].

To resolve these difficulties, we used SystemC [3] 
TLM to structure the design file for the dedicated 
circuit section. At the functional design stage, testing 
must verify points where data is exchanged between 
blocks. The TLM interface between blocks A and B 
is compared with the RTL interface in Fig. 3. When a 
block passes the results of its processing to another 
block, the procedure can be very long, as in the RTL 
case on the left. However, this procedure can become 
very simple, as shown on the right side, if the 
exchange is rewritten as a transaction. A transaction 
is the core action, such as the start or confirmation of 
a transmission or reception. The events handled in a 
simulation using TLM are arranged beforehand, so 
simulation can be done at high speed. When TLM is 
used, descriptors for the lines connecting blocks are 
much shorter, and this effectively reduces the amount 
of preparation work for simulation. Overall, the 
amount of descriptor code was about one-tenth of that 
for RTL, and the simulation executed about �00 times 
as fast as the RTL simulation. 

6.   Built-in transactors

Completing an RTL design of the dedicated-circuit 
section enables precise simulations to be done in 
block units, but problems arise when cooperative 
simulation is performed. The processor in the virtual 
hardware does not have actual signal lines, so the 
RTL for the dedicated circuit section cannot be con-
nected to the virtual hardware as it is.

Thus, we built transactors into the virtual hardware, 
as shown in Fig. 4. Transactors are composed of 
libraries provided by the existing simulation infra-
structure [4]. We used library functions to code the 
transactor to monitor accesses to the bus by the RTL 
of the dedicated circuits. When an access is detected, 
a function updates the register value at the appropri-
ate address. Figure 4 shows a transactor connecting 
two simulators: the lower one simulates the dedicated 
circuits with cycle accuracy and the upper one simu-
lates the software-equipped processor with fast TLM. 
The grey areas labeled TL (transaction level) mean 
that a TL connection is used when these areas are 
simulated. In the processor and bus in this area, when 
each part performs communications with the other 
part, the performance is set using a TL write. The TL 
connection enables communications to be performed 
with transaction between connected parts (models) 
and leads to high-speed simulation. On the other 
hand, the area of dedicated circuits is written to 
enable simulation with more detailed cycle accuracy. 
There is no way to connect directly between an area 
that uses TL connection when simulated and another 
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area simulated with cycle accuracy because the input/
output signal formats are completely different. That is 
why a transactor plays the role of a mutual conversion 
function for the two communication methods.

With the earlier approach, we built a prototype 
board, reproduced the RTL on a field-programmable 
gate array (FPGA), and loaded the software onto the 
processor to evaluate the whole system. The data for 
writing the FPGA was created using computer-aided 
design, and this also required several weeks of prepa-
ratory work. In comparison, using the new method, 
the design for this project required only five person-
days of preparation before evaluation was started. 
The method cannot replace all of the testing done 
with a prototype board, such as realtime signal pro-
cessing, but final testing can be started several weeks 
earlier; the saved time is the time that would have 
been required to prepare the data for rewriting the 
board.

7.   Cooperative design technology in the future

In this article, we introduced an example of apply-
ing cooperative design methods to the design of an 
SoC for optical access. Through this example, we 

showed that system-level cooperative simulation, at a 
level of precision appropriate and relevant for design 
stages as they progress, is possible for the dedicated 
circuit components, from top-level design to the final 
processes.

In the future, it will become more important to do 
multistage cooperative simulation, from the begin-
ning and in accordance with the design stages, when 
designing SoCs. The future possibilities enabled by 
this sort of design methodology are not limited to 
SoCs. Large-scale systems of even more complexity 
will fall into the scope of this research and we are 
taking on this new challenge. 
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