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1.   Introduction

Significant applications that use hidden Markov 
models (HMMs), including traffic monitoring and 
traffic anomaly detection, have emerged. The goal of 
this study is efficient monitoring of streaming data 
sequences by finding the best model in an exact way. 
Although numerous studies have been published in 
various research areas, this is, to the best of our 
knowledge, the first study to address the HMM search 
problem in a way that guarantees the exactness of the 
answer.

1.1   Problem definition
Increasing the speed of computing HMM likeli-

hoods remains a major goal for the speech recogni-
tion community. This is because most of the total 
processing time (30–70%) in speech recognition is 
used to compute the likelihoods of continuous density 
HMMs. Replacing continuous density HMMs by 
discrete HMMs is a useful approach to reducing the 
computation cost [�]. Unfortunately, the central pro-
cessing unit cost still remains excessive, especially 
for large datasets, since all possible likelihoods are 

computed. 
Recently, the focus of data engineering has shifted 

toward data stream applications [2]. These applica-
tions handle continuous streams of input from exter-
nal sources such as a sensor. Therefore, we address 
the following problem in this article: 
Problem Given an HMM set and a subsequence of 
data stream X = (x�, x2, ..., xn), where xn is the most 
recent value, identify the model whose state sequenc-
es have the highest likelihood, estimated with respect 
to X, among the set of HMMs by monitoring the 
incoming data stream. 

Key examples of this problem are traffic monitor-
ing [3], [4] and anomaly detection [5], [6]. 

1.2   New contribution
We have previously proposed a method called SPI-

RAL that offers fast likelihood searches for static 
sequences [7]. In this article*, it is extended to data 
streams; this extended approach, called SPIRAL-
Stream, finds the best model for data streams [8]. To 
reduce the search cost, we (�) reduce the number of 
states by clustering multiple states into clusters to 
compute the approximate likelihood, (2) compute the 
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approximate likelihood with several levels of granu-
larity, and (3) prune low-likelihood state sequences 
that will not yield the best model. SPIRAL-Stream 
has the following attractive characteristics based on 
the above ideas: 

-  High-speed searching: Solutions based on the 
Viterbi algorithm are prohibitively expensive for 
large HMM datasets. SPIRAL-Stream uses care-
fully designed approximations to efficiently 
identify the most likely model.

-  Exactness: SPIRAL-Stream does not sacrifice 
accuracy; it returns the highest likelihood model 
without any omissions.

To achieve high performance and find the exact 
answer, SPIRAL-Stream first prunes many models by 
using approximate likelihoods at a low computation 
cost. The exact likelihood computations are per-
formed only if absolutely necessary, which yields a 
drastic reduction in the total search cost.

The remainder of this article is organized as fol-
lows. Section 2 overviews some background of 
HMMs. Section 3 introduces SPIRAL-Stream and 
shows how it identifies the best model for data 
streams. Section 4 presents the results of our experi-
ments. Section 5 is a brief conclusion.

2.   HMMs

In this section, we explain the basic theory of 
HMMs.

2.1   Definitions
Unlike the regular Markov model, in which each 

state corresponds to an observable event, an HMM is 
used when there is a set of unobserved, thus hidden, 
states and the observation is a probabilistic function 
of the state. Let {ui} (i = �, ..., m) be a set of states.  
An HMM is composed of the following probabili-
ties:

-  Initial state probability p = {pi}: The probability 
of the state being ui (i = �, ..., m) at time t.

-  State transition probability a = {aij}: The proba-
bility of the state transiting from state ui to uj.

-  Symbol probability b(v) = {b(v)}: The probabil-
ity of symbol v being output from state ui.

HMMs are classified by the structure of the transition 
probability. Ergodic HMMs, or fully connected 
HMMs, have the property that every state can be 
reached from every other state. Another type of HMM 
is the left-right HMM; its state transitions have the 
property that, as time increases, the state number 
increases or stays the same.

2.2   Viterbi algorithm
The well-known Viterbi algorithm is a dynamic 

programming algorithm for HMMs that identifies the 
most-likely state sequence with the maximum prob-
ability and estimates its likelihood given an observed 
sequence. The state sequence, which gives the likeli-
hood, is called the Viterbi path. For a given model, the 
likelihood P of X is computed as follows:

P = max�<_i<_m (pin),  where 

pit = 




max�<_i<_m (pj(t–�)aji)bi(xt)    (2<_t<_n)
             pibi(x�)     (t =�)

 ,
 

where m is the length of the sequence, n is the number 
of states, and pit is the maximum probability of state 
ui at time t. The likelihood is computed on the basis 
of the trellis structure shown in Fig. 1, where states lie 
on the vertical axis and sequences are aligned along 
the horizontal axis. The likelihood is computed using 
the dynamic programming approach that maximizes 
the probabilities from previous states (i.e., each state 
probability is computed using all previous state prob-
abilities, associated transition probabilities, and sym-
bol probabilities).

The Viterbi algorithm generally needs O(nm2) time 
since it compares m transitions to obtain the maxi-
mum probability for every state; that is, it requires 
O(m2) in each time tick. The naive approach to moni-
toring data streams is to perform this procedure each 
time a sequence value arrives. However, considering 
the high frequency with which new values will arrive, 
more efficient algorithms are needed.

m

n

Fig. 1.   Trellis structure
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3.   Finding the best model for data streams:  
SPIRAL-Stream

In this section, we discuss how to handle data 
streams. 

3.1   Ideas behind SPIRAL-Stream
Our solution is based on three ideas: likelihood 

approximation, multiple granularities, and transition 
pruning. These are outlined below in this subsection 
and explained in more detail in subsections 3.2–3.4.
(1) Likelihood approximation

In a naive approach to finding the best model 
among a set of candidate HMMs, the Viterbi algo-
rithm would have to be applied to all the models, but 
the algorithm’s cost would be too high when it is 
applied to the entire set of HMMs. Therefore, we 
introduce approximations to reduce the high cost of 
the Viterbi algorithm solution. Instead of computing 
the exact likelihood of a model, we approximate the 
likelihood; thus, low-likelihood models are efficient-
ly pruned. 

The first idea is to reduce the model size. For given 
m states and granularity g, we create m/g states by 
merging similar states in the model (Fig. 2(a)), which 
requires O(nm2/g2) time to obtain the approximate 
likelihoods instead of the O(nm2) time demanded by 
the Viterbi algorithm solution. We use a clustering 
approach to find groups of similar states and then cre-
ate a compact model that covers the groups. We refer 
to it as the degenerate model. 
(2) Multiple granularities

Instead of creating degenerate models at just one 
granularity, we use multiple granularities to optimize 
the tradeoff between accuracy and comparison speed. 
As the size of a model increases, its accuracy 
improves (i.e., the upper bounding likelihood 
decreases), but the likelihood computation time 
increases. Therefore, we generate models at granular-
ity levels that form a geometric progression: g = 
�,2,4,..., m, where g = � gives the exact likelihood 
while g = m means the coarsest approximation. We 
then start from the coarsest model and gradually 
increase the size of the models to prune unlikely mod-
els; this improves the accuracy of the approximate 
likelihood as the search progresses (Fig. 2(b)). 
(3) Transition pruning

Although our approximation technique can discard 
unlikely models, we still rely on exact likelihood 
computation to guarantee the correctness of the 
search results. Here, we focus on reducing the cost of 
this computation. 

The Viterbi path shows the state sequence from 
which the likelihood is computed. Even though the 
Viterbi algorithm does not compute the complete set 
of paths, the trellis structure includes an exponential 
number of paths. Clearly, exhaustive exploration of 
all paths is not computationally feasible, especially 
for a large number of states. Therefore, we ask the 
question: Which paths in the structure are not promis-
ing to explore? This can be answered by using a 
threshold (say q). 

Our search algorithm that identifies the best model 
maintains the candidate (i.e., best-so-far) likelihood 
before reporting the final likelihood. Here, we use q 
as the best-so-far highest likelihood. q  is updated, i.e., 
increased, when a more promising model is found 
during search processing. Note that we assume that 
no two models have exactly the same likelihoods. 

We exclude the unlikely paths in the trellis structure 
by using q, since q never decreases during search 
processing. If the upper bounding likelihood of paths 
that pass through a state is less than q, that state can-
not be contained in the Viterbi path, and we can 
safely discard these paths, as shown in Fig. 2(c).

3.2   Likelihood approximation
Our first idea involves clustering states of the origi-

nal models and computing upper bounding likeli-
hoods to achieve reliable model pruning.
3.2.1   State clustering

We reduce the size of the trellis structure by merg-
ing similar states in order to compute likelihoods at 
low computation cost. To achieve this, we use a clus-
tering approach. Given granularity g, we try to find 
m/g clusters from among the m original states. First, 
we describe how to compute the probabilities of a 
new degenerate model; then, we describe our cluster-
ing method. 

We merge all the states in a cluster and create a new 
state. For the new state, we choose the highest prob-
ability among the probabilities of the states to com-
pute the upper bounding likelihood (described in 
subsection 3.2.2). We obtain the probabilities of new 
state uc by merging all the states in cluster C as fol-
lows. 

p̂ C = max(pi), âCD = max  (aik), b̂C(v) = max(bi(v))     ui∈C                                ui∈C,uk∈D                                           ui∈C

We use the following vector of features Fi to cluster 
state ui. 

Fi = (pi; ai�,..., aim;  a�i, ..., ami; bi(v�),..., bi(vs)),
where s is the number of symbols. We choose this 
vector to reduce the approximation error. The highest 
probabilities are the probabilities of a new state. 
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Therefore, the greater the difference in probabilities 
possessed by the two states, the greater the difference 
in the vectors becomes. Thus, a good clustering 
arrangement can be found by using this vector. 

In our experiments, we used the well-known k-
means method to cluster states where the Euclidean 
distance is used as a distance measure. However, we 
could exploit BIRCH [9] instead of the k-means 
method, the L� distance as a distance measure, or 
singular value decomposition to reduce the dimen-
sionality of the vector of features. The clustering 
method is completely independent of SPIRAL-
Stream and is beyond the scope of this article.

3.2.2   Upper bounding likelihood
We compute approximate likelihood P̂  from degen-

erate models that have m̂(=m/g)states. Given a degen-
erate model, we compute its approximate likelihood 
as follows: 

P̂ = max�<_c<_m̂ (p̂cn), where

 p̂cn = 




max�<_j<_m̂ (p̂j(t–�)âjc)b̂c(xt)    (2<_t<_n)
             p̂cb̂c(x�)     (t =�)

,

where p̂ is the maximum probability of states. 
Theorem 1 For any HMM model, P <_ p̂ holds. 
Proof Omitted owing to space limitations.
Theorem � provides SPIRAL-Stream with the prop-
erty of finding the exact answer [8]. 

(a) Likelihood approximation

(b) Multiple granularities

n

g
m

(c) Transition pruning

Fig. 2.   Basic ideas behind SPIRAL.
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3.3   Multiple granularities
The algorithm presented in subsection 3.2 uses a 

single level of granularity to compute the approxi-
mate likelihood of a degenerate model. However, we 
can also exploit multiple granularities. Here, we 
describe the gradual refinement of the likelihood 
approximation with multiple granularities. In this 
subsection, we first describe the definition of data 
streams and then our approach for data streams. 

In data stream processing, the time interval of inter-
est is generally called the window and there are three 
temporal spans for which the values of data streams 
need to be calculated [�0]:

-  Landmark window model: In this temporal 
span, data streams are computed on the basis of 
the values between a specific time point, called 
the landmark, and the present.

-  Sliding window model: Given sliding window 
length n and the current time point, the sliding 
window model computes the subsequence from 
the prior n − � time to the current time.

-  Damped window model: In this model, recent 
data values are more important than earlier ones. 
That is, in a damped window model, the weights 
applied to data decrease exponentially into the 
past.

This article focuses on the sliding window model 
because it is used most often and is the most general 
model. We consider a data stream as a time-ordered 
series of tuples (time point, value). Each stream has a 
new value available at each time interval, e.g., every 
second. We assume that the most recent sample is 
always taken at time n. Hence, a streaming sequence 
takes the form (..., x�, x2, ..., xn). Likelihoods are com-
puted only with n values from the streaming sequence, 
so we are only interested in subsequences of the 
streaming sequence from x� to xn.

For data streams, we use h + � distinct granularities 
that form a geometric progression gi = 2i (i = 0,�,2, ..., 
h). Therefore, we generate trellis structures of models 
that have m/gi states. Here, gh represents the small-
est (coarsest) model while g0 corresponds to the 
original model, which gives the exact likelihood. In 
the previous our study for static sequences [7], we 
first compute the coarsest structure for all models. We 
then obtain the candidate and the exact likelihood q. 
If a model has an approximate likelihood smaller than 
q, that model is pruned with no further computation. 
Otherwise, we compute a finer-grained structure for 
that model and check whether the approximate likeli-
hood is smaller than q. We iterate this check until we 
reach g0. 

For data streams, model granularity can be more 
efficiently decided by referring to the immediately 
prior granularity for data streams. It is reasonable to 
expect that the likelihood of the model examined for 
the subsequence will change little and that we can 
prune the models efficiently by continuing to use the 
prior granularities. That is, in the present time tick, 
the initial granularity is set relative to the finest 
granularity in the previous time tick at which the 
model likelihood was computed. If model pruning 
was conducted at the coarsest granularity, we use this 
granularity in the next time tick; otherwise, we use 
the granularity level that is one step down (coarser) as 
the initial granularity. If the model is not pruned at the 
initial granularity, the approximate likelihood of a 
finer-grained structure is computed to check for 
model pruning against the given q. 
Example If the original HMM has 16 states and the 
model was pruned with the 1-state model (granular-
ity g4, coarsest), we choose to use the 1-state model 
(granularity g4) as the initial model in the next time 
tick; if the model is pruned using the approximate 
likelihood of 16 states (granularity g0), we select the 
8-state model (granularity g�) as the initial model.

3.4   Transition pruning
We introduce an algorithm for computing likeli-

hoods efficiently on the basis of the following theo-
rem:
Lemma 1 Likelihoods of a state sequence are mono-
tonically nonincreasing with respect to X in the trellis 
structure.
Proof Omitted owing to space limitations.

We exploit the above lemma in pruning paths in the 
trellis structure. We introduce eit, which indicates a 
conservative estimate of likelihood pit, to prune 
unlikely paths as follows:

eit = 




pit = (amax)n–t   ∏
n
  bmax(xj)    (� <_ t <_ n – �)

                          pin    (t =n)
j =t+� ,

where amax and bmax(v) are the maximum values of the 
state transition probability and symbol probability, 
respectively: 
amax=maxi,j(aij), bmax(v)=maxibi(v),(i=�,...,m; j=�,..., m).

The estimate is exactly the same as the maximum 
probability of ui when t = n. Estimate eit, the product 
of the series of the maximum values of the state tran-
sition probability and symbol probability, has the 
upper bounding property assuming that the Viterbi 
path passes through ui at time t. 
Theorem 2 For paths that pass through state ui(i = �, 
..., m) at time t(� <_ t <_ n), pjn <_ eit holds for any state 
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uj(j = �, ..., m) at time n.
Proof Omitted owing to space limitations.

This property enables SPIRAL-Stream to search 
for models exactly.

In search processing, if eit gives a value smaller 
than q (i.e., the best-so-far highest likelihood in the 
search processing for the best model), state ui at time 
t for the model cannot be contained in the Viterbi 
path. Accordingly, unlikely paths can be pruned with 
safety. 

3.5   Search algorithm
Our approach to data stream processing is shown in 

Fig. 3. Here, Mi represents the set of models for 
which we compute the likelihood of granularity gi, 
and M'i represents the set of models computed with 
the finest granularity in the previous time tick, gi. 
SPIRAL-Stream first computes the initial value of q 
on the basis of the best model at the last time; it then 
sets the initial granularity. If a model is pruned at the 
coarsest granularity at the last time tick, SPIRAL-
Stream uses this granularity as the initial granularity. 
Therefore, we add M'h to Mh in this algorithm. The 
one-step-lower granularity is used as the initial gran-
ularity if the model was not pruned at the coarsest 
granularity; this procedure is expressed by “add M'i–� 
to M'i”.

3.6   Theoretical analysis
In this subsection, we provide a theoretical analysis 

that shows the accuracy and complexity of SPIRAL-
Stream. 
Theorem 2 SPIRAL-Stream guarantees the exact 
answer when identifying the model whose state 
sequence has the highest likelihood.
Proof Let Mbest be the best model in the dataset and 
qmax be the exact likelihood of Mbest (i.e., qmax is the 
highest likelihood). Moreover, let Pi be the likelihood 
of model M for granularity gi and q be the best-so-far 
(highest) likelihood in the search process. From The-
orems 1 and 2, we obtain P0 <_ Pi, for any granularity 
gi, for any M. For Mbest, qmax <_ Pi holds. In the search 
process, since q is monotonically nondecreasing and  
qmax >_ q, the approximate likelihood of Mbest is never 
lower than q, where q is monotonically nondecreas-
ing. The algorithm discards M if (and only if) q > Pi. 
Therefore, the best model Mbest cannot be pruned 
erroneously during the search process.

4.   Experimental evaluation

We performed experiments to test SPIRAL-

Stream’s effectiveness. We compared SPIRAL-
Stream [8] with the Viterbi algorithm, which we refer 
to as Viterbi hereinafter, and SPIRAL [7], which is 
our previous approach for static sequences.

4.1   Experimental data and environment
We used four standard datasets in the experiments.
-  EEG: This dataset was taken from a large elec-

troencephalography (EEG) study that examined 
the EEG correlates of genetic predisposition to 
alcoholism. In our experiments, we quantized 
EEG values in �-µV steps, which resulted in 506 
elements.

-  Chromosome: We used DNA (deoxyribonucleic 
acid) strings of human chromosomes 2, �8, 2�, 
and 22. DNA strings are composed of the four 
letters of the genetic code: A, C, G, and T; how-
ever, here we use an additional letter N to denote 
an unknown letter. Thus, the number of symbols 
(symbol size) is 5.

-  Traffic: This dataset contains loop sensor 

Algorithm        Monitoring

Input: subsequence X of stream, set of models M ’, the 
     previous best model M ’best.
Output: the best model Mbest.
 1: compute P0 for M ’best;
 2: θ := P0;
 3: Mbest := M ’best;
 4: add M ’h to Mh;
 5: for i := h to 1 do
 6:    add M ’i −1 to Mi;
 7: end for
 8: for i :=h to 0 do
 9:    θ ’:=0;
10:    for each model M ∈Mi do
11:        compute Pi for M:
12:        if Pi  >_ θ ’ then
13:           Mmax := M;
14:           θ ’ :=Pi 

15:         end if
16:     end for
17:     compute P0 for Mmax;
18:     if P0 >_ θ  then
19:          Mbest :=Mmax;
20:         θ  = P0;
21:      end if
22:      for each model M ∈Mi do
23:         if Pi  >_ then
24:            add M to Mi −1;
25:            subtract M from Mi;
26:          end if
27:       end for
28:       M ’i :=Mi;
29:  end for
30:  M ’best := Mbest ;
31:  return Mbest;

Fig. 3.   Search algorithm.
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measurements of the Freeway Performance 
Measurement System. The symbol size is 9�. 

-  UNIX: We exploited the command histories of 8 
UNIX computer users at a university over a two-
year period. The symbol size is 2360.

The models were trained by the Baum-Welch algo-
rithm [��]. In our experiments, the sequence length 
was 256 and possible transitions of a left-right model 
were restricted to only two states, which is typical in 
many applications.

We evaluated the search performance mainly by 
measuring the duration using a wall clock. All exper-
iments were conducted on a Linux quad 3.33 GHz 
Intel Xeon server with 32 GB of main memory. We 
implemented our algorithms using the GCC compiler. 
Each result reported here is the average of �00 trials.

4.2   Results of data stream monitoring
We conducted several experiments to test the effec-

tiveness of our approach for monitoring data streams.

4.2.1   Search cost
In Figs. 4(a) and (b), SPIRAL-Stream is compared 

with Viterbi and with the state-of-the-art approach for 
data sequences, SPIRAL, which finds the best model 
for static sequences, in terms of the wall-clock time 
for various datasets where the number of states and 
number of models are �00 and �0,000, respectively. 
As expected, SPIRAL-Stream outperformed the 
other two algorithms: In particular, SPIRAL-Stream 
could find the best model up to 490 times faster than 
the Viterbi algorithm. 
4.2.2   Effectiveness of the data stream algorithm

Our stream algorithm (SPIRAL-Stream) automati-
cally changes the granularity and effectively sets the 
initial candidate to find the best model. To determine 
the effectiveness of these ideas, we plotted the time at 
each granularity for SPIRAL-Stream and SPIRAL. 
The results of time versus granularity in the model 
search cost for �0,000 models for EEG, where each 
model has �00 states, are shown in Figs. 5(a) and (b).

0.1

1

10

100

1000

EEG Chomosome Traffic UNIX

W
al

l-c
lo

ck
 ti

m
e 

(s
) 

 

SPIRAL-Stream SPIRAL Viterbi

SPIRAL-Stream SPIRAL

(a) Ergodic

(b) Left-right

Viterbi

0.1

1

10

100

EEG Chomosome Traffic UNIX

W
al

l-c
lo

ck
 ti

m
e 

(s
)

Fig. 4.   Wall-clock time for monitoring data stream.

0

0.5

1

1.5

2

W
al

l-c
lo

ck
 ti

m
e 

(s
)

Granularity

(a) Ergodic

(b) Left-right

SPIRAL-Stream

SPIRAL

SPIRAL-STREAM
SPIRAL

64 32 16 8 4 2 1

0

0.05

0.1

0.15

0.2

W
al

l-c
lo

ck
 ti

m
e 

(s
)

Granularity
64 32 16 8 4 2 1

Fig. 5.   Breakdown of search cost.



Regular Articles

Vol. 9 No. 12 Dec. 2011 8

SPIRAL-Stream required less computation time at 
each granularity. Instead of using gh (the coarsest) as 
the initial granularity for all models, this algorithm 
sets the initial granularity with the finest granularity 
at the prior time tick, which ensures that the algo-
rithm reduces the number of models at each granular-
ity. Furthermore, the stream algorithm sets the best 
model at the prior time tick as the initial candidate, 
which is expected to remain the answer. As a result, it 
can find the best model for data streams much more 
efficiently.

5.   Conclusion

This article addressed the problem of conducting a 
likelihood search on a large set of HMMs with the 
goal of finding the best model for a given query 
sequence and for data streams. Our algorithm, SPI-
RAL-Stream, is based on three ideas: (�) it prunes 
low-likelihood models in the HMM dataset by their 
approximate likelihoods, which yields promising 
candidates in an efficient manner; (2) it varies the 
approximation granularity for each model to maintain 
a balance between computation time and approxima-
tion quality; and (3) it focuses on the efficient compu-
tation of only promising likelihoods by pruning out 
low-likelihood state sequences. Our experiments 
confirmed that SPIRAL-STREAM worked as expect-
ed and quickly found high-likelihood HMMs. Spe-
cifically, it was significantly faster (more than 490 
times) than the naive implementation.
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