
� NTT Technical Review

1. Introduction

Significant applications that use hidden Markov
models (HMMs), including traffic monitoring and
traffic anomaly detection, have emerged. The goal of
this study is efficient monitoring of streaming data
sequences by finding the best model in an exact way.
Although numerous studies have been published in
various research areas, this is, to the best of our
knowledge, the first study to address the HMM search
problem in a way that guarantees the exactness of the
answer.

1.1 Problem definition
Increasing the speed of computing HMM likeli-

hoods remains a major goal for the speech recogni-
tion community. This is because most of the total
processing time (30–70%) in speech recognition is
used to compute the likelihoods of continuous density
HMMs. Replacing continuous density HMMs by
discrete HMMs is a useful approach to reducing the
computation cost [1]. Unfortunately, the central pro-
cessing unit cost still remains excessive, especially
for large datasets, since all possible likelihoods are

computed.
Recently, the focus of data engineering has shifted

toward data stream applications [2]. These applica-
tions handle continuous streams of input from exter-
nal sources such as a sensor. Therefore, we address
the following problem in this article:
Problem Given an HMM set and a subsequence of
data stream X = (x1, x2, ..., xn), where xn is the most
recent value, identify the model whose state sequenc-
es have the highest likelihood, estimated with respect
to X, among the set of HMMs by monitoring the
incoming data stream.

Key examples of this problem are traffic monitor-
ing [3], [4] and anomaly detection [5], [6].

1.2 New contribution
We have previously proposed a method called SPI-

RAL that offers fast likelihood searches for static
sequences [7]. In this article*, it is extended to data
streams; this extended approach, called SPIRAL-
Stream, finds the best model for data streams [8]. To
reduce the search cost, we (1) reduce the number of
states by clustering multiple states into clusters to
compute the approximate likelihood, (2) compute the

Regular Articles

†	 NTT Cyber Space Laboratories
	 Yokosuka-shi, 239-0847 Japan

Fast Algorithm for
Monitoring Data Streams
by Using Hidden Markov Models
Yasuhiro Fujiwara† and Yasushi Sakurai

Abstract
We describe a fast algorithm for exact and efficient monitoring of streaming data sequences. Our

algorithm, SPIRAL-Stream, is a fast search method for finding the best model among a set of candidate
hidden Markov models (HMMs) for given data streams. It is based on three ideas: (1) it clusters model
states to compute approximate likelihoods, (2) it uses several granularities of clustering and approximation
level of likelihood values in search processing, and (3) it focuses on the efficient computation of only
promising likelihoods by pruning out low-likelihood state sequences. Experiments verified its effective
ness and showed that it was more than 490 times faster than the naive method.

*	 The present article is basically a shortened version of ref. [8].
Readers who would like more details, should refer to ref. [8].

Regular Articles

Vol. 9 No. 12 Dec. 2011 �

approximate likelihood with several levels of granu-
larity, and (3) prune low-likelihood state sequences
that will not yield the best model. SPIRAL-Stream
has the following attractive characteristics based on
the above ideas:

-	� High-speed searching: Solutions based on the
Viterbi algorithm are prohibitively expensive for
large HMM datasets. SPIRAL-Stream uses care-
fully designed approximations to efficiently
identify the most likely model.

-	� Exactness: SPIRAL-Stream does not sacrifice
accuracy; it returns the highest likelihood model
without any omissions.

To achieve high performance and find the exact
answer, SPIRAL-Stream first prunes many models by
using approximate likelihoods at a low computation
cost. The exact likelihood computations are per-
formed only if absolutely necessary, which yields a
drastic reduction in the total search cost.

The remainder of this article is organized as fol-
lows. Section 2 overviews some background of
HMMs. Section 3 introduces SPIRAL-Stream and
shows how it identifies the best model for data
streams. Section 4 presents the results of our experi-
ments. Section 5 is a brief conclusion.

2. HMMs

In this section, we explain the basic theory of
HMMs.

2.1 Definitions
Unlike the regular Markov model, in which each

state corresponds to an observable event, an HMM is
used when there is a set of unobserved, thus hidden,
states and the observation is a probabilistic function
of the state. Let {ui} (i = 1, ..., m) be a set of states.
An HMM is composed of the following probabili-
ties:

-	� Initial state probability p = {pi}: The probability
of the state being ui (i = 1, ..., m) at time t.

-	� State transition probability a = {aij}: The proba-
bility of the state transiting from state ui to uj.

-	� Symbol probability b(v) = {b(v)}: The probabil-
ity of symbol v being output from state ui.

HMMs are classified by the structure of the transition
probability. Ergodic HMMs, or fully connected
HMMs, have the property that every state can be
reached from every other state. Another type of HMM
is the left-right HMM; its state transitions have the
property that, as time increases, the state number
increases or stays the same.

2.2 Viterbi algorithm
The well-known Viterbi algorithm is a dynamic

programming algorithm for HMMs that identifies the
most-likely state sequence with the maximum prob-
ability and estimates its likelihood given an observed
sequence. The state sequence, which gives the likeli-
hood, is called the Viterbi path. For a given model, the
likelihood P of X is computed as follows:

P = max1<_i<_m (pin), where

pit =




max1<_i<_m (pj(t–1)aji)bi(xt) (2<_t<_n)
 pibi(x1) (t =1)

 ,

where m is the length of the sequence, n is the number
of states, and pit is the maximum probability of state
ui at time t. The likelihood is computed on the basis
of the trellis structure shown in Fig. 1, where states lie
on the vertical axis and sequences are aligned along
the horizontal axis. The likelihood is computed using
the dynamic programming approach that maximizes
the probabilities from previous states (i.e., each state
probability is computed using all previous state prob-
abilities, associated transition probabilities, and sym-
bol probabilities).

The Viterbi algorithm generally needs O(nm2) time
since it compares m transitions to obtain the maxi-
mum probability for every state; that is, it requires
O(m2) in each time tick. The naive approach to moni-
toring data streams is to perform this procedure each
time a sequence value arrives. However, considering
the high frequency with which new values will arrive,
more efficient algorithms are needed.

m

n

Fig. 1. Trellis structure

Regular Articles

� NTT Technical Review

3. Finding the best model for data streams:
SPIRAL-Stream

In this section, we discuss how to handle data
streams.

3.1 Ideas behind SPIRAL-Stream
Our solution is based on three ideas: likelihood

approximation, multiple granularities, and transition
pruning. These are outlined below in this subsection
and explained in more detail in subsections 3.2–3.4.
(1)	 Likelihood approximation

In a naive approach to finding the best model
among a set of candidate HMMs, the Viterbi algo-
rithm would have to be applied to all the models, but
the algorithm’s cost would be too high when it is
applied to the entire set of HMMs. Therefore, we
introduce approximations to reduce the high cost of
the Viterbi algorithm solution. Instead of computing
the exact likelihood of a model, we approximate the
likelihood; thus, low-likelihood models are efficient-
ly pruned.

The first idea is to reduce the model size. For given
m states and granularity g, we create m/g states by
merging similar states in the model (Fig. 2(a)), which
requires O(nm2/g2) time to obtain the approximate
likelihoods instead of the O(nm2) time demanded by
the Viterbi algorithm solution. We use a clustering
approach to find groups of similar states and then cre-
ate a compact model that covers the groups. We refer
to it as the degenerate model.
(2)	 Multiple granularities

Instead of creating degenerate models at just one
granularity, we use multiple granularities to optimize
the tradeoff between accuracy and comparison speed.
As the size of a model increases, its accuracy
improves (i.e., the upper bounding likelihood
decreases), but the likelihood computation time
increases. Therefore, we generate models at granular-
ity levels that form a geometric progression: g =
1,2,4,..., m, where g = 1 gives the exact likelihood
while g = m means the coarsest approximation. We
then start from the coarsest model and gradually
increase the size of the models to prune unlikely mod-
els; this improves the accuracy of the approximate
likelihood as the search progresses (Fig. 2(b)).
(3)	 Transition pruning

Although our approximation technique can discard
unlikely models, we still rely on exact likelihood
computation to guarantee the correctness of the
search results. Here, we focus on reducing the cost of
this computation.

The Viterbi path shows the state sequence from
which the likelihood is computed. Even though the
Viterbi algorithm does not compute the complete set
of paths, the trellis structure includes an exponential
number of paths. Clearly, exhaustive exploration of
all paths is not computationally feasible, especially
for a large number of states. Therefore, we ask the
question: Which paths in the structure are not promis-
ing to explore? This can be answered by using a
threshold (say q).

Our search algorithm that identifies the best model
maintains the candidate (i.e., best-so-far) likelihood
before reporting the final likelihood. Here, we use q
as the best-so-far highest likelihood. q is updated, i.e.,
increased, when a more promising model is found
during search processing. Note that we assume that
no two models have exactly the same likelihoods.

We exclude the unlikely paths in the trellis structure
by using q, since q never decreases during search
processing. If the upper bounding likelihood of paths
that pass through a state is less than q, that state can-
not be contained in the Viterbi path, and we can
safely discard these paths, as shown in Fig. 2(c).

3.2 Likelihood approximation
Our first idea involves clustering states of the origi-

nal models and computing upper bounding likeli-
hoods to achieve reliable model pruning.
3.2.1 State clustering

We reduce the size of the trellis structure by merg-
ing similar states in order to compute likelihoods at
low computation cost. To achieve this, we use a clus-
tering approach. Given granularity g, we try to find
m/g clusters from among the m original states. First,
we describe how to compute the probabilities of a
new degenerate model; then, we describe our cluster-
ing method.

We merge all the states in a cluster and create a new
state. For the new state, we choose the highest prob-
ability among the probabilities of the states to com-
pute the upper bounding likelihood (described in
subsection 3.2.2). We obtain the probabilities of new
state uc by merging all the states in cluster C as fol-
lows.

p̂ C = max(pi), âCD = max (aik), b̂C(v) = max(bi(v)) ui∈C ui∈C,uk∈D ui∈C

We use the following vector of features Fi to cluster
state ui.

Fi = (pi; ai1,..., aim; a1i, ..., ami; bi(v1),..., bi(vs)),
where s is the number of symbols. We choose this
vector to reduce the approximation error. The highest
probabilities are the probabilities of a new state.

Regular Articles

Vol. 9 No. 12 Dec. 2011 �

Therefore, the greater the difference in probabilities
possessed by the two states, the greater the difference
in the vectors becomes. Thus, a good clustering
arrangement can be found by using this vector.

In our experiments, we used the well-known k-
means method to cluster states where the Euclidean
distance is used as a distance measure. However, we
could exploit BIRCH [9] instead of the k-means
method, the L1 distance as a distance measure, or
singular value decomposition to reduce the dimen-
sionality of the vector of features. The clustering
method is completely independent of SPIRAL-
Stream and is beyond the scope of this article.

3.2.2 Upper bounding likelihood
We compute approximate likelihood P̂ from degen-

erate models that have m̂(=m/g)states. Given a degen-
erate model, we compute its approximate likelihood
as follows:

P̂ = max1<_c<_m̂ (p̂cn), where

 p̂cn =




max1<_j<_m̂ (p̂j(t–1)âjc)b̂c(xt) (2<_t<_n)
 p̂cb̂c(x1) (t =1)

,

where p̂ is the maximum probability of states.
Theorem 1 For any HMM model, P <_ p̂ holds.
Proof Omitted owing to space limitations.
Theorem 1 provides SPIRAL-Stream with the prop-
erty of finding the exact answer [8].

(a) Likelihood approximation

(b) Multiple granularities

n

g
m

(c) Transition pruning

Fig. 2. Basic ideas behind SPIRAL.

Regular Articles

� NTT Technical Review

3.3 Multiple granularities
The algorithm presented in subsection 3.2 uses a

single level of granularity to compute the approxi-
mate likelihood of a degenerate model. However, we
can also exploit multiple granularities. Here, we
describe the gradual refinement of the likelihood
approximation with multiple granularities. In this
subsection, we first describe the definition of data
streams and then our approach for data streams.

In data stream processing, the time interval of inter-
est is generally called the window and there are three
temporal spans for which the values of data streams
need to be calculated [10]:

-	� Landmark window model: In this temporal
span, data streams are computed on the basis of
the values between a specific time point, called
the landmark, and the present.

-	� Sliding window model: Given sliding window
length n and the current time point, the sliding
window model computes the subsequence from
the prior n − 1 time to the current time.

-	� Damped window model: In this model, recent
data values are more important than earlier ones.
That is, in a damped window model, the weights
applied to data decrease exponentially into the
past.

This article focuses on the sliding window model
because it is used most often and is the most general
model. We consider a data stream as a time-ordered
series of tuples (time point, value). Each stream has a
new value available at each time interval, e.g., every
second. We assume that the most recent sample is
always taken at time n. Hence, a streaming sequence
takes the form (..., x1, x2, ..., xn). Likelihoods are com-
puted only with n values from the streaming sequence,
so we are only interested in subsequences of the
streaming sequence from x1 to xn.

For data streams, we use h + 1 distinct granularities
that form a geometric progression gi = 2i (i = 0,1,2, ...,
h). Therefore, we generate trellis structures of models
that have m/gi states. Here, gh represents the small-
est (coarsest) model while g0 corresponds to the
original model, which gives the exact likelihood. In
the previous our study for static sequences [7], we
first compute the coarsest structure for all models. We
then obtain the candidate and the exact likelihood q.
If a model has an approximate likelihood smaller than
q, that model is pruned with no further computation.
Otherwise, we compute a finer-grained structure for
that model and check whether the approximate likeli-
hood is smaller than q. We iterate this check until we
reach g0.

For data streams, model granularity can be more
efficiently decided by referring to the immediately
prior granularity for data streams. It is reasonable to
expect that the likelihood of the model examined for
the subsequence will change little and that we can
prune the models efficiently by continuing to use the
prior granularities. That is, in the present time tick,
the initial granularity is set relative to the finest
granularity in the previous time tick at which the
model likelihood was computed. If model pruning
was conducted at the coarsest granularity, we use this
granularity in the next time tick; otherwise, we use
the granularity level that is one step down (coarser) as
the initial granularity. If the model is not pruned at the
initial granularity, the approximate likelihood of a
finer-grained structure is computed to check for
model pruning against the given q.
Example If the original HMM has 16 states and the
model was pruned with the 1-state model (granular-
ity g4, coarsest), we choose to use the 1-state model
(granularity g4) as the initial model in the next time
tick; if the model is pruned using the approximate
likelihood of 16 states (granularity g0), we select the
8-state model (granularity g1) as the initial model.

3.4 Transition pruning
We introduce an algorithm for computing likeli-

hoods efficiently on the basis of the following theo-
rem:
Lemma 1 Likelihoods of a state sequence are mono-
tonically nonincreasing with respect to X in the trellis
structure.
Proof Omitted owing to space limitations.

We exploit the above lemma in pruning paths in the
trellis structure. We introduce eit, which indicates a
conservative estimate of likelihood pit, to prune
unlikely paths as follows:

eit =




pit = (amax)n–t ∏
n
 bmax(xj) (1 <_ t <_ n – 1)

 pin (t =n)
j =t+1 ,

where amax and bmax(v) are the maximum values of the
state transition probability and symbol probability,
respectively:
amax=maxi,j(aij), bmax(v)=maxibi(v),(i=1,...,m; j=1,..., m).

The estimate is exactly the same as the maximum
probability of ui when t = n. Estimate eit, the product
of the series of the maximum values of the state tran-
sition probability and symbol probability, has the
upper bounding property assuming that the Viterbi
path passes through ui at time t.
Theorem 2 For paths that pass through state ui(i = 1,
..., m) at time t(1 <_ t <_ n), pjn <_ eit holds for any state

Regular Articles

Vol. 9 No. 12 Dec. 2011 �

uj(j = 1, ..., m) at time n.
Proof Omitted owing to space limitations.

This property enables SPIRAL-Stream to search
for models exactly.

In search processing, if eit gives a value smaller
than q (i.e., the best-so-far highest likelihood in the
search processing for the best model), state ui at time
t for the model cannot be contained in the Viterbi
path. Accordingly, unlikely paths can be pruned with
safety.

3.5 Search algorithm
Our approach to data stream processing is shown in

Fig. 3. Here, Mi represents the set of models for
which we compute the likelihood of granularity gi,
and M'i represents the set of models computed with
the finest granularity in the previous time tick, gi.
SPIRAL-Stream first computes the initial value of q
on the basis of the best model at the last time; it then
sets the initial granularity. If a model is pruned at the
coarsest granularity at the last time tick, SPIRAL-
Stream uses this granularity as the initial granularity.
Therefore, we add M'h to Mh in this algorithm. The
one-step-lower granularity is used as the initial gran-
ularity if the model was not pruned at the coarsest
granularity; this procedure is expressed by “add M'i–1
to M'i”.

3.6 Theoretical analysis
In this subsection, we provide a theoretical analysis

that shows the accuracy and complexity of SPIRAL-
Stream.
Theorem 2 SPIRAL-Stream guarantees the exact
answer when identifying the model whose state
sequence has the highest likelihood.
Proof Let Mbest be the best model in the dataset and
qmax be the exact likelihood of Mbest (i.e., qmax is the
highest likelihood). Moreover, let Pi be the likelihood
of model M for granularity gi and q be the best-so-far
(highest) likelihood in the search process. From The-
orems 1 and 2, we obtain P0 <_ Pi, for any granularity
gi, for any M. For Mbest, qmax <_ Pi holds. In the search
process, since q is monotonically nondecreasing and
qmax >_ q, the approximate likelihood of Mbest is never
lower than q, where q is monotonically nondecreas-
ing. The algorithm discards M if (and only if) q > Pi.
Therefore, the best model Mbest cannot be pruned
erroneously during the search process.

4. Experimental evaluation

We performed experiments to test SPIRAL-

Stream’s effectiveness. We compared SPIRAL-
Stream [8] with the Viterbi algorithm, which we refer
to as Viterbi hereinafter, and SPIRAL [7], which is
our previous approach for static sequences.

4.1 Experimental data and environment
We used four standard datasets in the experiments.
-	� EEG: This dataset was taken from a large elec-

troencephalography (EEG) study that examined
the EEG correlates of genetic predisposition to
alcoholism. In our experiments, we quantized
EEG values in 1-µV steps, which resulted in 506
elements.

-	� Chromosome: We used DNA (deoxyribonucleic
acid) strings of human chromosomes 2, 18, 21,
and 22. DNA strings are composed of the four
letters of the genetic code: A, C, G, and T; how-
ever, here we use an additional letter N to denote
an unknown letter. Thus, the number of symbols
(symbol size) is 5.

-	� Traffic: This dataset contains loop sensor

Algorithm Monitoring

Input: subsequence X of stream, set of models M ’, the
 previous best model M ’best.
Output: the best model Mbest.
 1: compute P0 for M ’best;
 2: θ := P0;
 3: Mbest := M ’best;
 4: add M ’h to Mh;
 5: for i := h to 1 do
 6: add M ’i −1 to Mi;
 7: end for
 8: for i :=h to 0 do
 9: θ ’:=0;
10: for each model M ∈Mi do
11: compute Pi for M:
12: if Pi >_ θ ’ then
13: Mmax := M;
14: θ ’ :=Pi

15: end if
16: end for
17: compute P0 for Mmax;
18: if P0 >_ θ then
19: Mbest :=Mmax;
20: θ = P0;
21: end if
22: for each model M ∈Mi do
23: if Pi >_ then
24: add M to Mi −1;
25: subtract M from Mi;
26: end if
27: end for
28: M ’i :=Mi;
29: end for
30: M ’best := Mbest ;
31: return Mbest;

Fig. 3. Search algorithm.

Regular Articles

� NTT Technical Review

measurements of the Freeway Performance
Measurement System. The symbol size is 91.

-	� UNIX: We exploited the command histories of 8
UNIX computer users at a university over a two-
year period. The symbol size is 2360.

The models were trained by the Baum-Welch algo-
rithm [11]. In our experiments, the sequence length
was 256 and possible transitions of a left-right model
were restricted to only two states, which is typical in
many applications.

We evaluated the search performance mainly by
measuring the duration using a wall clock. All exper-
iments were conducted on a Linux quad 3.33 GHz
Intel Xeon server with 32 GB of main memory. We
implemented our algorithms using the GCC compiler.
Each result reported here is the average of 100 trials.

4.2 Results of data stream monitoring
We conducted several experiments to test the effec-

tiveness of our approach for monitoring data streams.

4.2.1 Search cost
In Figs. 4(a) and (b), SPIRAL-Stream is compared

with Viterbi and with the state-of-the-art approach for
data sequences, SPIRAL, which finds the best model
for static sequences, in terms of the wall-clock time
for various datasets where the number of states and
number of models are 100 and 10,000, respectively.
As expected, SPIRAL-Stream outperformed the
other two algorithms: In particular, SPIRAL-Stream
could find the best model up to 490 times faster than
the Viterbi algorithm.
4.2.2 Effectiveness of the data stream algorithm

Our stream algorithm (SPIRAL-Stream) automati-
cally changes the granularity and effectively sets the
initial candidate to find the best model. To determine
the effectiveness of these ideas, we plotted the time at
each granularity for SPIRAL-Stream and SPIRAL.
The results of time versus granularity in the model
search cost for 10,000 models for EEG, where each
model has 100 states, are shown in Figs. 5(a) and (b).

0.1

1

10

100

1000

EEG Chomosome Traffic UNIX

W
al

l-c
lo

ck
 ti

m
e

(s
)

SPIRAL-Stream SPIRAL Viterbi

SPIRAL-Stream SPIRAL

(a) Ergodic

(b) Left-right

Viterbi

0.1

1

10

100

EEG Chomosome Traffic UNIX

W
al

l-c
lo

ck
 ti

m
e

(s
)

Fig. 4. Wall-clock time for monitoring data stream.

0

0.5

1

1.5

2

W
al

l-c
lo

ck
 ti

m
e

(s
)

Granularity

(a) Ergodic

(b) Left-right

SPIRAL-Stream

SPIRAL

SPIRAL-STREAM
SPIRAL

64 32 16 8 4 2 1

0

0.05

0.1

0.15

0.2

W
al

l-c
lo

ck
 ti

m
e

(s
)

Granularity
64 32 16 8 4 2 1

Fig. 5. Breakdown of search cost.

Regular Articles

Vol. 9 No. 12 Dec. 2011 �

SPIRAL-Stream required less computation time at
each granularity. Instead of using gh (the coarsest) as
the initial granularity for all models, this algorithm
sets the initial granularity with the finest granularity
at the prior time tick, which ensures that the algo-
rithm reduces the number of models at each granular-
ity. Furthermore, the stream algorithm sets the best
model at the prior time tick as the initial candidate,
which is expected to remain the answer. As a result, it
can find the best model for data streams much more
efficiently.

5. Conclusion

This article addressed the problem of conducting a
likelihood search on a large set of HMMs with the
goal of finding the best model for a given query
sequence and for data streams. Our algorithm, SPI-
RAL-Stream, is based on three ideas: (1) it prunes
low-likelihood models in the HMM dataset by their
approximate likelihoods, which yields promising
candidates in an efficient manner; (2) it varies the
approximation granularity for each model to maintain
a balance between computation time and approxima-
tion quality; and (3) it focuses on the efficient compu-
tation of only promising likelihoods by pruning out
low-likelihood state sequences. Our experiments
confirmed that SPIRAL-STREAM worked as expect-
ed and quickly found high-likelihood HMMs. Spe-
cifically, it was significantly faster (more than 490
times) than the naive implementation.

References

[1]	 S. Sagayama, K. M. Knill, and S. Takahashi, “On the Use of Scalar
Quantization for Fast HMM Computation,” Proc. of ICASSP, Vol. 1,
pp. 213–216, Detroit, MI, USA, 1995.

[2]	 D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul, and S. B. Zdonik, “Aurora: A New
Model and Architecture for Data Stream Management,” Journal of
VLDB, Vol. 12, No. 2, pp. 120–139, 2003.

[3]	 P. Bickel, C. Chen, J. Kwon, J. Rice, P. Varaiya, J. R. Pravin, and E. V.
Zwet, “Traffic Flow on a Freeway Network,” In Workshop on Nonlin-
ear Estimation and Classification, 2001.

[4]	 J. Kwon and K. Murphy, “Modeling Freeway Traffic with Coupled
HMMs,” Tech. Rep., University of California at Berkeley, 2000.

[5]	 T. Lane, “Hidden Markov Models for Human/Computer Interface
Modeling,” Proc. of the IJCAI-99 Workshop on Learning About
Users, pp. 35–44, 1999.

[6]	 C. Warrender, S. Forrest, and B. A. Pearlmutter, “Detecting Intrusions
Using System Calls: Alternative Data Models,” Proc. of the 1999
IEEE Symposium on Security and Privacy, pp. 133–145, Oakland,
CA, USA.

[7]	 Y. Fujiwara, Y. Sakurai, and M. Yamamuro, “SPIRAL: Efficient and
Exact Model Identification for Hidden Markov Models,” Proc. of
KDD’08, pp. 247–255, Las Vegas, NV, USA, 2008.

[8]	 Y. Fujiwara, Y. Sakurai, and M. Kitsuregawa, “Fast Likelihood Search
for Hidden Markov Models,” ACM Trans. on Knowledge Discovery
from Data (TKDD), Vol. 3, No. 4, 2009.

[9]	 T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases,” Proc. of SIG-
MOD Conference, pp. 103–114, Montreal, Quebec, Canada, 1996.

[10]	 V. Ganti, J. Gehrke, and R. Ramakrishnan, “DEMON: Mining and
Monitoring Evolving Data,” IEEE Trans. Knowl. Data Eng., Vol. 13,
No. 1, pp. 50–63, 2001.

[11]	 S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An Introduction to
the Application of the Theory of Probabilistic Functions of a Markov
Process to Automatic Speech Recognition,” Bell Syst. Tech. J, Vol. 62,
No. 4, pp. 1035–1074, 1982.

Yasuhiro Fujiwara
Researcher, NTT Cyber Space Laboratories.
He received the B.E. and M.E. degrees from

Waseda University, Tokyo, in 2001 and 2003,
respectively, and the Ph.D. degree from the Uni-
versity of Tokyo in 2012. He joined NTT Cyber
Solutions Laboratories in 2003. His research
interests include data mining, databases, natural
language processing, and artificial intelligence.
He received two KDD best paper awards in 2008,
IPSJ Best Paper Awards in 2008, IEICE Best
Paper Award in 2008, and DASFAA Best Paper
Award in 2012. He is a member of the Institute of
Physical Society of Japan (IPSJ), Institute of
Electronics, Information and Communication
Engineers (IEICE), and Database Society of
Japan (DBSJ).

Yasushi Sakurai
Senior Research Scientist, NTT Communica-

tion Science Laboratories.
He received the B.E. degree from Doshisha

University, Kyoto, in 1991 and the M.E. and Ph.
D. degrees from Nara Institute of Science and
Technology in 1996 and 1999, respectively. He
joined NTT Cyber Space Laboratories in 1998.
He was a visiting researcher at Carnegie Mellon
University, Pittsburgh, PA, USA, during 2004–
2005. Since 2007, he has been a senior research-
er at NTT Communication Science Laboratories.
He received the IPSJ Nagao Special Researcher
Award (2007), DBSJ Kambayashi Incentive
Award (Young Scientist Award, 2007), and
twelve best paper awards, including two KDD
best research paper awards (2008 and 2010),
IPSJ best paper awards (2004 and 2008), and
IEICE Best Paper Award (2008). His research
interests include indexing, data mining, and data
stream processing.

