
� NTT Technical Review

1. Introduction

1.1 Background
Ever since its establishment by Bellare and Roga-

way [�], the notion of random oracles has played an
essential role in the design of asymmetric crypto-
graphic schemes [2], [3]. Informally, random oracles
are objects that should behave like public random
functions, accepting variable input length (VIL) data
and returning variable output length (VOL) random
strings. Random oracles are ideal objects: they cannot
be implemented without additional assumptions. In
practice, random oracles are replaced with concrete
functions.

It is not an easy task to construct a random-looking
VIL-VOL concrete function from scratch. So we usu-
ally start with a small concrete function that is
restricted to a fixed input length (FIL) and fixed out-
put length (FOL). Such functions are often called
compression functions. We then iterate the compres-
sion functions in some way to obtain VIL and/or VOL
functions.

Concrete functions that accept VIL strings but
return only FOL strings are commonly called hash
functions. The construction of secure hash functions
has been theoretically investigated in various ways. In
particular, the security of hash functions as VIL (but
FOL) random oracles was studied by Coron et al. [4],
where the underlying compression functions were
modeled as FIL-FOL (restricted) random oracles in
light of the indifferentiability framework [5]. Subse-
quent to the work reported in [4], the domain exten-
sion of random oracles has been analyzed in depth
[6]–[��].

On the other hand, the range extension of random
oracles has attracted less attention from the theoreti-
cal aspect. Despite the lack of formal treatment, VOL
random oracles are regularly used in designing pub-
lic-key cryptographic schemes, in particular digital
signatures [3]. For the random oracles utilized in
those signature schemes, which achieve full message
recovery [�2]–[�6], the variability in output length
becomes absolutely crucial.

There already exist several constructions for

Regular Articles

On the Security of the Cryptographic
Mask Generation Functions
Standardized by ANSI, IEEE,
ISO/IEC, and NIST
Koutarou Suzuki and Kan Yasuda

Abstract
We revisit the security of mask generation functions (MGFs) in light of the indifferentiability

framework. MGFs are a kind of hash function having variably long outputs and they are frequently
utilized for designing public-key cryptographic schemes such as digital signatures. First, we clarify that
there are weak and strong versions of indifferentiability, depending on the order of quantifies in the
definition. Next, we prove that the classical, counter-based MGF standardized by ANSI, IEEE, and ISO/
IEC satisfies only the weak version of indifferentiability, whereas the Double-Pipeline Iteration Mode
specified in SP800-�08 by the National Institute of Standards and Technology (NIST) satisfies the strong
version. While our analysis does not necessarily imply that counter-based MGFs are insecure, our results
show that MGF constructions have different levels of security (i.e., indifferentiability).

Regular Articles

Vol. 10 No. 11 Nov. 2012 2

VIL-VOL concrete functions. They are called by the
common name mask generation functions (MGFs).
The majority of existing MGFs follow the counter-
based design and have been standardized by ANSI
(American National Standards Institute), IEEE (Insti-
tute of Electrical and Electronics Engineers), and
ISO/IEC (International Organization for Standardiza-
tion, International Electrotechnical Commission).
For example, the algorithm MGF� [�3], [�7]–[�9]
takes a hash function H: {0, �}*−→ {0, �}n, computes
upon input x the string

H (x||〈0〉32) || H (x||〈�〉32) || H (x||〈2〉32) || ···,

and truncates this string to the leftmost l bits, where
〈i〉α denotes an α-bit representation of integer i and l
denotes the requested length. The main motivation
behind the current work is to provide a formal secu-
rity analysis for this type of construction.

The same types of algorithms are often called key
derivation functions (KDFs), mostly when they take
secret inputs. These are standardized in SP800-�08
by NIST (National Institute of Standards and Tech-
nology) [20]. The security of KDFs is formally
treated in [2�]. We analyze the security of the Dou-
ble-Pipeline Iteration Mode specified in SP800-�08
as an MGF that takes only public inputs.

1.2 Our results
We take the systematic approach proposed by

Coron et al. [4] and apply the indifferentiability
framework [5] to our study of MGFs. That is, we
consider two MGF constructions whose security is
analyzed under the condition that an ideal hash func-
tion (a VIL/FOL random oracle) H: {0, �}*−→ {0,
�}n is given. Using this basic strategy, we obtain the
following results, which are summarized in Table 1:

- Local vs. universal. We point out that in the lit-
erature there are two different versions of indif-
ferentiability notions.

- Analysis of counter-based MGFs. We obtain two

impossibility results for the counter-based
MGF�. The first result says that MGF� cannot be
proven to be indifferentiable from the ideal MGF
in the sense that there exist no natural simula-
tors. The second result says that MGF� itself
cannot be proven to be insecure in the sense that
there exists no strong adversary.

- Analysis of chained MGFs. We analyze the secu-
rity of the Double-Pipeline Iteration Mode
specified in NIST SP800-�08, which can be
shown to be indifferentiable from an ideal MGF.
We provide concrete security bounds for the
Double-Pipeline Iteration Mode. Unlike the case
of domain extension, the security of this scheme
degrades only linearly with the number of oracle
queries*�.

1.3 Organization
Section 2 defines our notation and provides other

preliminaries. Section 3 reviews the notion of indif-
ferentiability, identifies a class of natural simulators,
and defines an MGF. Section 4 defines the counter-
based MGF and analyzes its security. Section 5
defines the Double-Pipeline Iteration Mode and ana-
lyzes its security. Section 6 concludes with a brief
summary and some concluding remarks about future
work.

2. Preliminaries

2.1 Basic notation
{0, �}m denotes the set of bit strings whose length

is equal to m > 0. {0, �}0 denotes the set consisting of
only the null string ε. {0, �}* denotes the set of finite
bit strings.

|x| denotes the bit length of a string x ∈{0, �}*.
[x]m represents the leftmost m bits of a string

*� In the case of domain extension, a collision in the chaining values
immediately leads to insecurity, which implies that the degrada-
tion is quadratic in query complexity.

Definition of indifferentiability

Note: By “cannot be proven”, we mean that it is impossible to prove that the
construction is secure. We prove impossibility rather than give an attack;
we do not mean that the construction is insecure.

Local (∀A S, Maurer et al. [5])

Universal (S ∀A, Coron et al. [4])

Counter-based MGF

Secure [Theorem 1]

Cannot be proven [Theorem 2]

Chained MGF

Construction

Secure [Theorem 3]

Secure [Theorem 3]

Table 1. Summary of our results.

Regular Articles

3 NTT Technical Review

x ∈{0, �}*. [x]m represents the rightmost m bits.
Given two strings x and y, we let x||y be the concat-

enation of x and y.
m indicates the smallest integer greater than or

equal to an integer m.
We write N for the set of positive integers and write
Z≥0 for the set of nonnegative integers.

By writing x ∈U X, we mean that x is an element
chosen uniformly at random from the set X.

2.2 Security parameters and length encoding
A security parameter is a positive integer κ ∈N. It

is customary to write �κ ∈{0, �}* instead of κ ∈N to
emphasize the fact that κ is a security parameter.
Whenever possible, we omit the security parameter κ
and make it implicit in our statements.

2.3 Oracle machines
Throughout the paper, the computation model is

fixed. Specifically, we regard any probabilistic algo-
rithm as a (probabilistic) Turing machine. We con-
sider an oracle machine, which is a Turing machine
given access to an oracle. Interaction with an oracle is
done via the machine’s communication tape, and a
reply from an oracle is given immediately, i.e., the
time for interaction is � (unit time) irrespective of the
query length, the reply length, and the oracle’s behav-
ior. Note, however, that the machine consumes the
time taken to write its query onto the communication
tape. Moreover, if the machine wants to read partially
or wholly the reply written on the tape, the corre-
sponding amount of time is consumed.

We write A to indicate the fact that a Turing
machine A interacts with an oracle . We also let A
denote the output value returned by A after its interac-
tion with . We can always replace with any other
machine B that has a compatible interface, in which
case we write AB. We write A �, 2, ... when A has access
to multiple oracles.

2.4 Modes and distinguishers
A mode is a deterministic algorithm M that takes as

its input a security parameter �κ and a finite string
x ∈X, where domain X is a subset of {0, �}*, and
computes as its output a finite string y ∈{0, �}*. A
mode M has access to an oracle , and the interface
between M and depends on the security parameter
κ. In other words, we can consider a family of oracles
{ κ}κ, from among which an appropriate oracle is
chosen by M according to the value κ. Succinctly, we
can write y ← M κ(�κ, x). Obviously, the algorithm
M may not be deterministic if is not, even though

the mode M itself must be deterministic.
A distinguisher is a probabilistic algorithm D that

takes as its input a security parameter �κ and outputs
a bit b ∈{0, �}. A distinguisher D is given access to
multiple oracles, and one of them is frequently mode
M. In such a setting, we say that “the distinguisher D
attacks the mode M.” Succinctly written, b ←
DM κ (�κ, -), ...(�κ). Note that the same security param-
eter κ is used for both D and M.

2.5 Time and query complexities
Generally speaking, we may want to restrict the

capacity of an oracle machine in terms of its time
complexity and query complexity. In the present
work, however, we treat only query complexity
because an oracle machine’s running time is irrele-
vant to the context of our security analysis*2. The
query complexity is measured in terms of two quanti-
ties qA and lA for a given oracle machine A, where qA
represents the limit on the total number of queries that
machine A can send to its oracles and lA represents the
limit on the maximum length of each query or reply.

A construction F is said to be tractable if its bounds
qF and lF are polynomials in the following three vari-
ables: security parameter κ, input length |x|, and out-
put length |y|. A distinguisher D is said to be efficient
if its bounds qD and lD are polynomials in the security
parameter κ. A simulator S is said to be efficient if its
bounds qS and lS, as well as the size |σ'| of updated
state σ', are polynomials in the following four vari-
ables: security parameter κ, input state length |σ|,
input length |x|, and output length |y|.

3. Indifferentiability framework and
security of the MGF

In this section, we revisit the notion of indifferen-
tiability. There are two points that we would like to
clarify: (�) the definition of a simulator and (2) the
order of quantifiers with respect to the simulator.
Now, we define the security of the MGF.

3.1 Simulator division and connector extraction
In order to define indifferentiability, we need to

introduce a simulator. A simulator S is a probabilistic
algorithm that takes as its input a security parameter
�κ, current state information σ ∈Σ (where the set Σ of
state information is a subset of {0, �}*), and an input
value x ∈X (where the domain X is a subset of {0, �}*)

*2 In our analysis, the source of randomness always involves ran-
dom oracles, and we never deal with computational assumptions.

Regular Articles

Vol. 10 No. 11 Nov. 2012 4

and computes as its output a pair of updated state
information σ'∈Σ and a finite string y ∈{0, �}*. For
convenience, we assume that the empty string ε is in
the set Σ. Simulator S is always an oracle machine
having access to some oracle M. Succinctly, we can
write

(σ', y) ← SM(�κ, σ, x).

S’s goal is to mimic some oracle κ : X −→ {0, �}*
that is expected to return y ∈{0, �}* in response to the
query x ∈X.

We introduce a connector C, which is a dummy
functionality whose purpose is merely to connect
simulator S to an oracle machine D. A connector C is
a stateful machine; that is, it has an internal memory
that can store current state information σ ∈Σ. The
state σ is initially set to the empty string ε. Connector
C works as follows. Upon receiving an oracle query
x ∈X from distinguisher D, connector C forwards (σ,
x) to simulator S and lets S compute (σ', y) ← SM(�κ,
σ, x). Connector C receives the output (σ', y) from S,
updates its own state information from σ to σ', and
returns the value y to D.

Consider a distinguisher D κ interacting with an
oracle κ : X −→ {0, �}*. We can replace the oracle κ
with the machine CS and hence obtain DCS. Since the
connector C does nothing but provide a trivial inter-
face, we write (with abuse of notation) DS instead of
DCS.

3.2 Definition of indifferentiability: local vs. uni-
versal

There are two different versions of the indifferen-
tiability notion. The setting for the notion of indif-
ferentiability is as follows. Let D be an adversary. D’s
goal is to distinguish between the real world and the
ideal world. In either world, D has access to two
oracles. In the real world, we define efficient con-
struction F having access to oracle φ to be indifferen-
tiable from oracle Φ as follows. Consider a polyno-
mial-time simulator S having access to oracle Φ and
trying to simulate φ. Simulator S has complete knowl-
edge of F. Consider a polynomial-time adversary D
that has access to two oracles and is expected to out-
put a bit at the end of each game execution. D has
complete knowledge of not only F but also S. The
notion of indifferentiability for F (together with S and
D) is given by the following two different games: in
the real game, D is given access to two oracles F and
φ, while in the ideal game, D is given access to two
oracles φ and S. We define the advantage (D)

of adversary D as

 (D) = | Pr [DFΦ, Φ = �] – Pr [DΦ, SΦ

 = �] |,

where the probability is taken over the coin tosses φ
and Φ.

Definition 1 (Local: Maurer et al. [5]). Let F be an
efficient construction. We say that F is indifferentiable
from the random oracle (in the sense of Maurer et
al.’s definition) if for any polynomial-time adversary
D there exists an efficient simulator S and a negligible
function ∋(κ) such that the inequality (D) <_ ∋ holds.

Definition 2 (Universal: Coron et al. [4]). Let F be
an efficient construction. We say that F is indifferen-
tiable from the random oracle (in the sense of Coron
et al.’s definition) if there exists an efficient simulator
S such that for any polynomial-time adversary D
there exists a negligible function ∋(κ) satisfying the
inequality (D) <_ ∋.

To avoid confusion, we give specific names to these
two notions: we say that an efficient construction F is
locally indifferentiable if it is indifferentiable in the
former sense and universally indifferentiable if it is
indifferentiable in the latter sense. Clearly, universal
indifferentiability implies local indifferentiability.

Remark 1. It seems that the two definitions arise
from the difference in purpose. The main purpose of
the former definition is to discuss security under the
system compositions, and the definition indeed gives
a necessary and sufficient condition for composabil-
ity. On the other hand, the purpose of the latter is to
measure how good a construction is, because the exis-
tence of a universal simulator shows that it is indeed
a good construction, with the simulator being the
inverse construction.

Remark 2. We emphasize that adversaries D and
simulators S are merely algorithms (Turing ma-
chines). Hence, a simulator S is not allowed to
observe the queries/replies made in the interaction
between D and Φ*3. Moreover, note that D is not
allowed to observe the running time of oracles with
which it interacts because any oracle interaction takes
exactly unit time.

*3 In fact, when D is interacting with the Φ -oracle, simulator S is
not even invoked.

Regular Articles

5 NTT Technical Review

3.3 Definition of MGF functionality/security
To formalize the functionality of MGFs, we define

MGFs and their corresponding random oracle (i.e.,
ideal MGF function), and we define hash functions
and their corresponding random oracle (i.e., ideal
hash function).

We start by giving a definition of an MGF. Intui-
tively, an MGF is defined as a concrete function that
takes as its input a seed x together with the requested
length l and returns a string of l bits. An ideal MGF is
simply a monolithic random function having such an
interface.

Definition 3 (MGF). An MGF is a VIL-VOL function
F: {0, �}* × {�}*−→ {0, �}* satisfying the following
two properties:
1. Length: For all x ∈{0, �}*X and l ∈Z≥0, we have

|F (x, �l) | = l.

2. Prefix: For all l; l’ ∈Z≥0 such that l ≤ l’, we have

F (x, �l) = [F (x, �l')]l .

The MGF random oracle is a function chosen
uniformly at random from the set of MGFs.

The notion of MGFs corresponds to the original
definition of VIL/VOL random oracles by Bellare
and Rogaway [6]; an MGF specifies the length of
outputs. The notion of MGFs is also compatible with
the interface of the MGF�, which has been widely
standardized [�3], [�7]–[�9].

Below, we give one of several possible definitions
of a hash function.

Definition 4 (Hash function). A hash function is a
VIL/FOL function H: {0, �}*−→ {0, �}n, where
n ∈N.

The random oracle is a function chosen uni-
formly at random from the set of hash functions with
n-bit outputs.

We say that efficient construction F of an MGF
using random oracle φ = is secure if it is indif-
ferentiable from MGF random oracle Φ = .

4. Analysis of counter-based MGFs

First, we define the counter-based MGF F. Then,
we show that F cannot be proven to be indifferentia-
ble from in the sense that there exists no unaf-

fected simulator. On the other hand, we also show
that F cannot be proven to be insecure in the sense
that there exists no unaffected adversary.

4.1 Description of the counter-based MGF
The counter-based MGF F: {0, �}* × N −→ {0, �}*

uses a hash function H: {0, �}* −→ {0, �}n. Here, the
output length n is a polynomial function of the secu-
rity parameter κ. The description of F is as follows:
�. Receive an input (x; l) ∈{0, �}*× N.
2. Set t = l/n and r = l–n(t – �).
3. Compute yi = H(x||〈i〉α(κ)) for i = 0, …, t – �.
4. Output F(x, l) = y0|| ··· ||yt – 2||[yt – �]r.

In the above, 〈i〉α(κ) denotes an α(κ)-bit representa-
tion of integer i, where α(κ) is a polynomial in κ. The
counter-based MGF is illustrated in Fig. 1.

4.2 Proof that the counter-based MGF is locally
indifferentiable

We prove that the counter-based MGF M defined
above is locally indifferentiable. Intuitively, the proof
goes as follows. Given an efficient distinguisher D,
there exist polynomials qD(κ) and lD(κ). Using these
polynomials, we can construct an efficient simulator
S that sets the advantage of D to zero.
Theorem 1. The counter-based MGF M is locally
indifferentiable from an ideal MGF M.
Proof. Let D be an efficient distinguisher attacking
the counter-based MGF F. We show that there exists
an efficient simulator S that makes the advantage
function of D equal to 0.

Let qD(κ) and lD(κ) be polynomial functions
restricting the capacity of D. Using these polynomi-
als, we construct a simulator SΦ(�κ, σ, x) as follows.
�. Receive an -query X ∈{0, �}* from adversary

D.
2. If (X, Y) is already in state σ, then return (σ, Y) to

adversary D.
3. If X = x||〈i〉α(κ) and i · n(κ) ≤ lD(κ), then compute Y

= [Φ (x,(i+�) · n(κ))]n(κ) by asking Φ oracle and
obtain updated state σ' by adding (X, Y) to σ and
return (σ', Y) to adversary D.

Fig. 1. Description of the counter-based MGF.

Regular Articles

Vol. 10 No. 11 Nov. 2012 6

4. If X = x||〈i〉α(κ) and i · n(κ) > lD(κ), then choose a
random string Y ∈U {0, �}n(κ) and obtain updated
state σ' by adding (X, Y) to σ and return (σ', Y) to
adversary D.

We see that S is an efficient simulator because we
have tS = O(qDlD), qS = qD, and lS = lD + n. We also
observe that S perfectly mimics the oracle in a
way consistent with the oracle (up to length lD).
Hence, we can set ∋(κ) = 0.

4.3 Proof that the counter-based MGF is not uni-
versally indifferentiable

Now we prove that the counter-based MGF F is not
universally indifferentiable from an ideal MGF Φ.
Intuitively, we argue that any single simulator S will
fail when a distinguisher D starts by raising a query
x||〈i〉α(κ) for some huge i. In such a case, S is forced to
decide whether or not to send a query (x, n(i + �) to
its Φ oracle. If the value i is within the resource
bounds of D, then S should certainly send such a
query (and return the consistent value). On the other
hand, if i is beyond the resource bounds of D, then S
should simply ignore making such a query (and
return a random string). However, S cannot make
such a decision intelligently because it is not allowed
to have any information about D.

Theorem 2. The counter-based MGF F is not univer-
sally indifferentiable from an ideal MGF Φ.

Proof. Suppose, on the contrary, that there exists a
single simulator S that works against any efficient
distinguisher. We show that this leads to a contradic-
tion.

Let κ be the security parameter. Throughout the
proof, we set the seed x to be a one-bit string “0,” i.e.,
x = 0.

First, we define two types of events, Queryi and
Replyi, for i ∈Z≥0. Every distinguisher that we con-
struct in the current proof sends a query of the form
x||〈i〉α(κ), for some i ∈Z≥0, to its H oracle at the begin-
ning of each game execution. Let Queryi denote this
event. After the event Queryi, the simulator S is given
a pair (ε, x||〈i〉α(κ)) (ε being the null state) and is
required to return updated state σ' and a string y ∈{0,
�}n(κ). Let Replyi denote this event, i.e., the event that
(σ', y) ← SΦ(�κ, ε, x||〈i〉α(κ)) is computed and returned
to the intermediary I.

Next, we define probabilities pi(κ) for i ∈Z≥0. Let
Tunei denote the event, which occurs between Queryi
and Replyi, of simulator S sending a query (x, �l) to

its Φ oracle for some l ≥ n(κ) · i + �. Put pi(κ)=
Pr[Tunei]. Since we fix the seed x, the probability
pi(κ) is well-defined for each pair of an integer i ∈Z≥0
and a security parameter κ ∈N. Note that the proba-
bility pi(κ) does not depend on the description of
distinguishers and is defined over the coins of S and
Φ (S may send some other queries to its Φ oracle in
the interval).

We define a function j: N −→ Z≥0 ∪ {∞} as follows.
For security parameter κ ∈N, let j(κ) be the smallest
index i such that pi(κ) ≤ �/3 (This fraction can be any
constant strictly larger than 0 and strictly smaller than
�/2). If no such index exists, then we define j(κ) as the
special symbol ∞, which is defined to be larger than
any i ∈Z≥0. Again, note that j is determined as soon
as we fix the simulator S; the description of j is inde-
pendent of distinguishers.

We show that j cannot be bounded by a polynomial
function. Suppose, on the contrary, that there exists
some polynomial function f (κ) and an integer N� ∈N
such that for all security parameters κ > N� the
inequality j(κ) < f (κ) holds. If such a polynomial
function f exists, then it implies that there also exists
a distinguisher (�κ) as follows.
�. Choose a random index i ∈U {0, � ..., f (κ) – �},
2. Send a query x||〈i〉α(κ) to its S oracle and receive a

string y ∈{0, �}n(κ),
3. Send a query (x, �n(κ) · (i + �)) to its Φ oracle and

receive a string y ∈{0, �}*,
4. y' ← [y]n(κ),
5. If y = y', return �; otherwise, return 0.

Observe that the distinguisher Df makes exactly
two queries, each being at most n(κ) · f(κ) bits. There-
fore, Df is an efficient distinguisher.

We show that this is in direct contradiction to the
requirement that the success probability of the distin-
guisher Df be negligible. To see this, let us compute
the advantage Advmgf(Df (�κ)) for sufficiently large
security parameters κ > N�. If Df interacts with the
pair (F, φn(κ)), we can easily verify that Df outputs �
with probability �. On the other hand, if Df interacts
with the pair (Φ, S), we claim that the probability of
Df (�κ) returning � is at most � – f(κ)–� · (2/3 – 2–n(κ)).
To see this, let One denote the event = � and Hit
denote the event i = j(κ) in line � of the description of
distinguisher (�κ). We have

Pr[One] = Pr[Hit ∧ One] + Pr[Hit ∧ One]
= Pr[Hit] · Pr[One | Hit] + Pr[Hit] · Pr[One | Hit]

≤ �
f(κ)

 · Pr[One | Hit] + f(κ) – �
f(κ)

 · �,

Regular Articles

7 NTT Technical Review

and we also have

Pr[One | Hit] = Pr[Tunei ∧ One | Hit] + Pr[Tunei ∧ One | Hit]
= Pr[Tunei | Hit] · Pr[One | Hit ∧ Tunei]

+Pr[Tunei | Hit] · Pr[One | Hit ∧ Tunei]

≤ �
3

 · � + �·
�

2n(κ) ,

where the variable i denotes the value selected in line
� of the description of the distinguisher (�κ).
Hence, we get

Pr[=�] ≤
�

f(κ)
 (�

3 +
�

2n(κ)) +
f(κ) – �

f(κ)
 = � –

�
f(κ)

 (2
3 –

�
2n(κ)),

and we also get

 (Df (�κ)) ≥� – � +
�

f(κ)
 (2

3
 –

�
2n(κ)) =

�
f(κ)

 (2
3

 –
�

2n(κ)) ≥
�

6f(κ)
,

which is clearly not a negligible function.
Thus, we have shown that function j(κ) is not

bounded by any polynomial function. We show that
this also leads to a contradiction, creating another
type of distinguisher.

To construct the distinguisher, we first identify a
polynomial g(κ) as follows. Consider an initial query
x||〈i〉α(κ). This leads to an input (�κ, σ, x||〈i〉α(κ)) to the
simulator S, where σ = ε and x = 0. Hence, the length
of such an input is κ + 0 + � + α(κ), which is a poly-
nomial in κ. Since the bound lS is a polynomial in the
input length, we can regard lS as a polynomial in κ,
which we define as g(κ) = lS (κ +� + α(κ)). Now that
we have identified a polynomial function g(κ), we
construct the distinguisher (�κ) as follows.
�. i ← min (g(κ) +�, 2α(κ) – �)
2. Send a query x||〈i〉α(κ) to its S oracle and discard

whatever is received,
3. Return �.

Next, we find a security parameter κ� for which
running Dg with S leads to a contradiction. Observe
that there exists some integer N0 ∈ N such that for all
κ > N0, the inequality g(κ) + � < 2 α(κ) – � holds
because the left-hand side is a polynomial in κ where-
as the right-hand side is an exponential function of κ.
Now recall that j(κ) is not bounded by any polyno-
mial function, which implies that there exists some
integer κ� > N0 such that g(κ�) + � <j(κ�). Here, it is
important to note that we have Pg(κ�) + � (κ�) > �/3
from the definition of j.

Finally, by setting the security parameter κ to κ�,

we find a contradiction in the simulator’s bound lS
when running Dg. The distinguisher Dg sends its S
oracle a query x||〈g(κ�) + �〉α(κ�), which forces S with
probability of more than �/3 to send a query (x, l) to
its Φ oracle for some l ≥ n(κ�) · (g(κ�) + �). Then, we
have

g(κ�) = lS (κ� + � + α(κ�)) ≥ l ≥ n(κ�) · (g(κ�) + �),

which is a contradiction.

5. Analysis of chained MGFs

Our results for the counter-based MGF raise the
question of whether there exists an MGF construction
that can be proven to be universally indifferentiable
from an ideal MGF. In this section, we present one
such construction: the chained MGF. As an example
of the chained MGF, we describe the Double-Pipeline
Iteration Mode specified in NIST SP800-�08 [20].
We then prove that the Double-Pipeline Iteration
Mode is universally indifferentiable from an ideal
MGF.

5.1 Description of the Double-Pipeline Iteration
Mode

The Double-Pipeline Iteration Mode specified in
NIST SP800-�08 [20] F: {0, �}* × N −→ {0, �}* uses
a hash function H: {0, �}* −→ {0, �}n. Here, the out-
put length n = n(κ) is a polynomial function of the
security parameter κ such that the inequality n(κ) > κ
holds for all κ ∈ N. The description of F is as fol-
lows:
�. Receive an input (x, l) ∈{0, �}* × N.
2. Set t = l/n, r = l–n(t – �) and υ0 = x ∈{0, �}*.
3. Compute υi = H(υi – �) and yi = H(υi ||〈i〉α(κ)||x) for

i = �, …, t.
4. Output F(x, l) = y� || ··· ||yt – �||[yt]r.

In the above, 〈i〉α(κ) denotes an α(κ)-bit representation
of integer i, where α(κ) is a polynomial in κ. The
Double-Pipeline Iteration Mode is illustrated in
Fig. 2.

Since the resource bound of the Double-Pipeline
Iteration Mode F is O(|x|l) and the output length is
O(l), the Double-Pipeline Iteration Mode F is effi-
cient.

5.2 Proof that the Double-Pipeline Iteration
Mode is universally indifferentiable

The Double-Pipeline Iteration Mode F is indiffer-
entiable from MGF random oracle mgf.

Regular Articles

Vol. 10 No. 11 Nov. 2012 8

Theorem 3. The Double-Pipeline Iteration Mode
 is universally indifferentiable from oracle mgf

in the sense that there exists a universal simulator S
having bounds tS = , qS = qD, lS = qDn, and ∋ =
qD/2n.
Proof. We construct a simulator S that has access to
oracle mgf and that tries to simulate oracle . S
works as follows:
�. Receive an -query X ∈{0, �}* from adversary

D.
2. If the query X ∈{0, �}* is stored, return the stored

answer to adversary D.
3. If X = x, return a random string υ� ∈U {0, �}n to D

and store (v0 = x, v�, �, “chained”).
4. If X = vi and (vi-�, vi, i, “chained”) is stored, return

a random string vi+� ∈U {0, �}m to D and store (vi,
vi+�, i + �; “chained”).

5. If X= υi ||〈i〉α(κ)||x and (vi-�, vi, i; “chained”) is
stored, return yi = [mgf (x, i · n)]n ∈{0, �}n to D
and store ((vi, i, x), yi, i, “chained”).

6. Otherwise, return a random string Y ∈U {0, �}n to
D and store (X, Y, “junk”).

Now we argue that simulator S is a polynomial-time
adversary. To see this, let tD, qD, lD be polynomial
functions such that D(κ) ∈ D(tD, qD, lD). Since S
makes mgf-oracle queries only if distinguisher D
makes a chained query, the number of queries sent by
S to mgf-oracle is at most qD, and each query is of
length at most qDn bits. Hence, we have qS = qD, lS =
qDn. S needs to search at most qD stored queries at
most qD times. Hence, we have tS = .

S perfectly simulates oracle in a way consis-
tent with the construction F except in the case that
distinguisher D asks X = υi ||〈i〉α(κ)||x with the correct
vi before asking X = vi-�. Hence, we have ∋(κ) =
qD/2n.

However, the Double-Pipeline Iteration Mode out-
puts n/2n bits per hash function computation, so it is
less efficient than a counter-based MGF, which out-

puts n bits per hash function computation.

6. Conclusion

We have shown that the counter-based MGF cannot
be proven to be naturally indifferentiable from the
ideal MGF. As a solution to this problem, we have
shown that a chained MGF is proven to be indifferen-
tiable from the ideal MGF. However, the chained
MGF is less efficient than the counter-based MGF
because it outputs fewer bits per invocation and oper-
ates in a non-parallelizable manner. It might be worth
performing a more detailed study of this security/per-
formance tradeoff because the current work opens up
other possibilities for new MGF constructions that
are indifferentiable from the ideal MGF and at the
same time more efficient (or more secure) than the
chained MGF.

References

[�] M. Bellare and P. Rogaway, “Random oracles are practical: A para-
digm for designing efficient protocols,” Proc. of the �st ACM Confer-
ence on Computer and Communications Security, pp. 62–73, Fairfax,
VA, USA, �993.

[2] M. Bellare and P. Rogaway, “Optimal asymmetric encryption,” In
Alfredo De Santis, editor, EUROCRYPT �994, Lecture Notes in
Computer Science, Vol. 950, pp. 92–���, Heidelberg, �995, Spring-
er.

[3] M. Bellare and P. Rogaway, “The exact security of digital signa-
tures—How to sign with RSA and Rabin,” In Ueli M. Maurer, editor,
EUROCRYPT �996, Lecture Notes in Computer Science, Vol. �070,
pp. 399–4�6, Heidelberg, �996, Springer.

[4] J. -S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-Damgård
revisited: How to construct a hash function. In Victor Shoup, editor,
CRYPTO 2005, Lecture Notes in Computer Science, Vol. 362�, pp.
430–448, Heidelberg, 2005, Springer.

[5] U. M. Maurer, R. Renner, and C. Holenstein, “Indifferentiability,
impossibility results on reductions, and applications to the random
oracle methodology,” In Moni Naor, editor, TCC 2004, Lecture Notes
in Computer Science, Vol. 295�, pp. 2�–39, Heidelberg, 2004,
Springer.

[6] M. Bellare and T. Ristenpart, “Multi-property-preserving Hash
Domain Extension and the EMD Transform,” In Xuejia Lai and Kefei
Chen, editors, ASI-ACRYPT 2006, Lecture Notes in Computer Sci-
ence, Vol. 4284, pp. 299–3�4, Heidelberg, 2006, Springer.

[7] D. Chang, S. Lee, M. Nandi, and M. Yung, “Indifferentiable Security
Analysis of Popular Hash Functions with Prefix-free Padding,” In
Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, Lecture
Notes in Computer Science, Vol. 4284, pp. 283–298, Heidelberg,
2006, Springer.

[8] M. Bellare and T. Ristenpart, “Hash functions in the dedicated-key
setting: Design choices and MPP transforms,” In Lars Arge, Christian
Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP
2007, Lecture Notes in Computer Science, Vol. 4596, pp. 399–4�0,
Heidelberg, 2007, Springer.

[9] S. Hirose, J. H. Park, and A. Yun, “A simple variant of the Merkle-
Damgård scheme with a permutation,” In Kaoru Kurosawa, editor,
ASIACRYPT 2007, Lecture Notes in Computer Science, Vol. 4833,
pp. ��3–�29, Heidelberg, 2007, Springer.

[�0] U. M. Maurer and S. Tessaro, “Domain extension of public random
functions: Beyond the birthday barrier,” In Alfred Menezes, editor,

Fig. 2. Description of the Double-Pipeline Iteration Mode.

Regular Articles

9 NTT Technical Review

CRYPTO 2007, Lecture Notes in Computer Science, Vol. 4622, pp.
�87–204, Heidelberg, 2007, Springer.

[��] D. Chang and M. Nandi, “Improved Indifferentiability Security
Analysis of ChopMD Hash Function,” In Kaisa Nyberg, editor, FSE
2008, Lecture Notes in Computer Science, Vol. 5086, pp. 429–443,
Heidelberg, 2008, Springer.

[�2] ISO/IEC, Geneva. ISO/IEC 9796-3 Information technology––Secu-
rity techniques––Digital signature schemes giving message recov-
ery––Part 3: Discrete logarithm based mechanisms, 2006.

[�3] IEEE Computer Society, New York, “IEEE �363.� Standard Specifi-
cations For Public-Key Cryptography,” 2000.

[�4] L. A. Pintsov and S. A. Vanstone, “Postal revenue collection in the
digital age,” In Yair Frankel, editor, Financial Cryptography 2000,
Lecture Notes in Computer Science, Vol. �962, pp. �05–�20, Heidel-
berg, 200�, Springer.

[�5] M. Abe and T. Okamoto, “A Signature Scheme with Message Recov-
ery as Secure as Discrete Logarithm,” In Kwok-Yan Lam, Eiji Oka-
moto, and Chaoping Xing, editors, ASIACRYPT �999, Lecture Notes

in Computer Science, Vol. �7�6, pp. 378–389, Heidelberg, �999,
Springer.

[�6] M. Abe, T. Okamoto, and K. Suzuki, “Message Recovery Signature
Schemes from Sigma-protocols,” NTT Technical Review, Vol. 6, No.
�, 2008.

 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr2008
0�sp2.html

[�7] ANSI, New York, “ANSI X9.44 Draft D2,” 2002.
[�8] RSA Security, Bedford, “PKCS#� v2.�,” 2002.
[�9] ISO/IEC, Geneva, “ISO/IEC �8033-2 Information technology––

Security techniques––Encryption algorithms––Part 2: Asymmetric
ciphers,” 2006.

[20] NIST, “NIST SP800-�08,” 2009.
[2�] H. Krawczyk, “Cryptographic Extraction and Key Derivation: The

HKDF Scheme,” CRYPTO 20�0, pp. 63�-648, Tal Rabin, editor,
Lecture Notes in Computer Science Vol. 6223, Heidelberg, 20�0,
Springer.

Koutarou Suzuki
Senior Research Scientist, Information Secu-

rity Project, NTT Secure Platform Laboratories.
He received the B.S., M.S., and Ph.D. degrees

from the University of Tokyo in �994, �996, and
�999, respectively. He joined NTT in �999. He
has been engaged in research on public key cryp-
tography, especially on cryptographic protocols
and digital signatures.

Kan Yasuda
Senior Research Scientist, Information Secu-

rity Project, NTT Secure Platform Laboratories.
He received the Ph.D. degree in mathematical

sciences from the University of Tokyo in 2003.
He has been working for NTT since 2004.

https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200801sp2.html

