
� NTT Technical Review

1. Introduction

The cost and difficulty of developing applications is
increasing. Modern ones are becoming connected to
the network and required to handle a huge number of
users. They depend on various types of middleware
and may run on more than 100 servers. In addition, to
ensure that they are kept up to date with the changing
market, they are also required to be flexible.

NTT is developing platform-as-a-service (PaaS)
software*1 based on Cloud Foundry [1], which is a
cloud-computing-based open source software PaaS
(open PaaS), to enable us to develop and manage
applications more easily, quickly, and flexibly at a
lower cost.

2. Advantages of PaaS for service development

PaaS is a layer on top of the infrastructure-as-a-ser-
vice (IaaS) layer that provides ready-to-use middle-
ware environments to service developers (Fig. 1).
This middleware includes operating systems, web
servers, database management systems (DBMSs),
and application frameworks, and it is essential to run
cloud applications. However, with the functionality
of modern applications becoming much more sophis-

ticated, middleware environments are also becoming
much more complex. This means that efficient man-
agement of the middleware is critical to control ser-
vice costs. However, middleware is commonly shared
by various applications. For example, a middleware
set composed of a Linux operating system, Apache
web server, MySQL DBMS, and Perl (or PHP or
Python) programming language is referred to as
LAMP and is very popular, especially for web appli-
cations. Therefore, a PaaS includes the provision of
common middleware environments for service devel-
opers and their management for users.

The greatest advantage of using a PaaS as a service
environment is the reduced cost and faster speed of
service development and management. In addition, a
PaaS makes large-scale development easy and does
not require such a large initial investment, so it
enables a small flexible startup with on-demand
scale-up.

During a development, cost reductions are achieved
by reducing the number of man-hours required to set
up both the hardware and middleware for the ser
vices. Without a PaaS, developers must build their
application environments by themselves. For exam-
ple, they must install servers at their datacenter and
set up operating systems, DMBSs, web servers, and
any other software they need in each machine. This is
manageable if there are only a few machines, but if
there are over a hundred servers, it becomes a very
labor-intensive task. A PaaS enables such simple
tasks to be offloaded to the PaaS providers. The only
necessary step is to input the required amount of

Feature Articles: Platform Technologies for
Open Source Cloud Big Data

PaaS Software Based on
Cloud Foundry
Yudai Iwasaki, Shunsuke Kurumatani, Tsutomu Nomoto,
Takahiko Nagata, and Shinichi Nakagawa

Abstract
NTT is developing platform-as-a-service (PaaS) software based on Cloud Foundry, which is open-

source PaaS software. We introduce the advantages of developing applications on a PaaS, the features of
Cloud Foundry, and our efforts to put these developments into commercial use.

*1	 In this article, we use “PaaS software” to refer to a stack of tech-
nologies (also known as a platform) for constructing a PaaS and
“application” to refer to a service application that runs on the
PaaS. A PaaS user is a user that develops and deploys applica-
tions on the PaaS; an application user is a person that uses the
application.

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

resources into the management console. The environ-
ment can be set up immediately with fewer man-
hours and less lead-time.

Another benefit during the development process is
that a PaaS can offer developers mature tools for
building high-performance applications. Creating
high-performance scalable applications in a distrib-
uted environment generally requires deep and exten-
sive know-how. With a PaaS, however, such know-
how is included in the tools (backend systems and
software development kit (SDK) or application pro-
gramming interface (API)). Users can easily develop
high-level applications using the provided tools.

A PaaS also allows users to reduce the costs of
operating user services. Such services typically
require system updates such as patches for bugs and
security fixes for operating systems and middleware
that have been in operation for an extended time. In
addition, server hardware and software must be con-
stantly monitored 24 hours a day, 7 days a week to
ensure correct functioning. The PaaS takes over these
simple tasks and allows the service provider to deliv-
er complex services with minimal monitoring.

Another reason to use a PaaS is flexibility. It allows
computing resources to be consumed on demand.
This means that users do not have to continuously
reserve sufficient resources to handle peak times such
as monthly batch processing or irregular user events.
In addition, providers can start services with a mini-
mum number of servers and add additional resources
step by step. This is a big advantage when an experi-
mental service is being started.

Several commercial PaaS offerings are in opera-
tion, for example, Google App Engine, Sales Force’s

Heroku and Force.com, and Microsoft Azure. Each
has its own characteristics in terms of support for
languages, middleware, and frameworks (Table 1).
For example, Google App Engine provides easy-to-
scale middleware, and Heroku supports many pro-
gramming languages such as Ruby and JavaScript.
Force.com differs from the other services in provid-
ing useful business logic.

3. Cloud Foundry: open-source PaaS software

Cloud Foundry is open source software developed
mainly by VMware in a project that started in 2011.
By contrast, most PaaS software such as Google App
Engine and Heroku uses closed proprietary software.
Since the source code of Cloud Foundry is open, any-
one can use it to build their own PaaS. Despite its
newness, Cloud Foundry has become a popular type
of PaaS software. For example, Active State and
AppFog have developed and are selling PaaS solu-
tions based on Cloud Foundry, and Rakuten is using
Cloud Foundry for its in-house PaaS. In the NTT
Group, NTT Communications is planning to launch a
public PaaS based on Cloud Foundry [2].

Cloud Foundry has three main features, which are
described below.
(1)	 No vendor lock-in

PaaS users can avoid vendor lock-in with specific
PaaS vendors by using the open-source Cloud Found-
ry. In general, PaaS offerings differ in usage such as
in the API that is provided or the process used to
deploy applications. This means that it is difficult to
migrate an application developed for a specific PaaS
to another PaaS. The migration might require the

SaaS

PaaS

IaaS

OS: operating system
SaaS: software as a service

Applications

Frameworks

Web server

OS

Virtual machine

Hypervisor

Server

Hypervisor

Server

Virtual machine Virtual machine Virtual machine

DBMS

OS

Frameworks

Web server

OS

Load balancer

OS

Fig. 1. Technology stack of cloud computing.

� NTT Technical Review

Feature Articles

application to be redesigned or rebuilt. This can
impose several risks; for example, PaaS users might
be forced to accept a price increase, or the service
might suddenly be suspended by the provider. In con-
trast, when PaaS users (i.e., application developers)
use a Cloud-Foundry-based PaaS, all of their devel-
oped applications are compatible with each other, so
they can run them with less risk. They can choose the
best PaaS provider at the moment and even build their
own private PaaS environment using Cloud Foundry.
(2)	 Flexible configuration

Cloud Foundry is designed with sufficient flexibil-
ity to satisfy a huge variety of needs for PaaS environ-
ments. The Cloud Foundry system consists of several
components, and users can set up their environment
by choosing the necessary combination and number
of components for their needs (Fig. 2). Cloud Found-
ry supports a wide range of environments—from a
private PaaS on a single server to a huge public PaaS
on a cluster of over a thousand servers—and can be
set up to suit the scale as well as its reliability and
support features. Moreover, users can add compo-
nents on demand, so it is possible to start with the
minimum configuration and increase the scale as the
load grows.
(3)	 Support for languages and frameworks

Cloud Foundry supports most of the major pro-
gramming languages such as Ruby, Java, and Java-
Script. It also supports a variety of popular frame-
works used for building web applications; for exam-

ple, Ruby on Rails, Sinatra, Spring, and Node.js are
supported as default. DBMS, MySQL, and Post-
greSQL are supported, and other modern forms of
DBMS such as MongoDB and Redis are also sup-
ported. PaaS users can develop their applications in
their own way even in Cloud Foundry’s PaaS environ-
ment. This makes it easy to introduce a PaaS to the
development process with no additional costs.

Another example of an open PaaS is OpenShift
Origin. Developed by Red Hat as an open-source ver-
sion of their PaaS called OpenShift, it was announced
on April 30, 2012. At the time of writing, Cloud
Foundry has advantages over the younger OpenShift
Origin in its more mature quality and market percep-
tion. However, Red Hat has a lot of experience and
has made significant contributions to open source
software development, e.g., to Linux and KVM,
which are popularly used for cloud systems. There-
fore, we need to monitor further development of
OpenShift Origin.

4. Contributions by NTT

NTT is developing its own PaaS software based on
Cloud Foundry. Although Cloud Foundry is a promis-
ing PaaS software solution that has many good fea-
tures, as described above, it is still not perfect, espe-
cially when used for NTT’s PaaS software. For
example, its reliability and convenience in commer-
cial usage were not sufficient in the early phase, and

Name

Google App Engine

AWS Elastic
Beanstalk

Windows Azure
(Cloud Services)

Heroku

Cloud Foundry

AppFog

Stackato

OpenShift

* Languages listed on official sites. PaaS offerings may support other compatible languages or have restriction for support.

Vendor

Google

Amazon

Microsoft

salesforce.com

VMWare

AppFog

ActiveState

Red Hat

Source code

Closed

Closed

Closed

Closed

Cloud
Foundry

Cloud
Foundry

Cloud
Foundry

OpenShift

Features

Easy to develop highly scalable applications
using BigTable and related APIs

Supports various other services provided in AWS

Integrates well with Microsoft’s products including
its integrated development environment

Supports many programming languages

Commercial service using Cloud Foundry by
VMware

Commercial service based on Cloud Foundry

Private PaaS solution based on Cloud Foundry

Red Hat’s commercial Paas offering using
OpenShift

Supported programming languages*

Java, Python, Go

.NET, PHP, Java

.net, JavaScript, Java, PHP, Python

Force.com salesforce.com Closed Provides various types of business logicApex

Ruby, Java, Python, Clojure, Scala,
JavaScript

Java, JavaScript, Ruby, Scala

Java, Python, JavaScript,
.Net, Ruby, PHP

Java, Python, Perl, PHP, Ruby,
JavaScript, Clojure, Scala, Erlang

Java, Ruby, JavaScript, Python,
PHP, Perl

Table 1. List of existing PaaS offerings.

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

integration with other NTT services was naturally not
provided by other vendors. In addition, Cloud Found-
ry is still not in wide use, and this is an obstacle that
prevents it from growing as an open source software
solution. Therefore, we have been making efforts to
improve Cloud Foundry.

4.1 Contributions to Cloud Foundry
(1)	 Reliability of Cloud Foundry components

Because Cloud Foundry was a very young project
when we started our development, it did not have suf-
ficient reliability to be used for a commercial service
based on it. Therefore, NTT has been examining the
performance and scalability of Cloud Foundry by
conducting various tests and fixing any problems
revealed by them. For example, we solved a problem
involving an important component that was a single

point of failure and a problem where some compo-
nents could not be restored after failures by fixing the
source code and adding additional external systems.
(2)	 Convenience of Cloud Foundry

Since convenience is important for commercial
services, we created an installer for the virtual
machine container (VMC), which is the console for
PaaS users, and we are now developing a function for
linking the VMC and version control systems such as
Git.
(3)	 Integration with IaaS software

Although Cloud Foundry has a flexible component
system, as described above, to leverage the features,
it is essential to integrate it with an IaaS layer under
Cloud Foundry. Therefore, NTT is developing a man-
agement system that controls both Cloud Foundry
and the underlying IaaS systems. This orchestration

Web
browser

Router

Router

VMC

Application developers
access via command line console

ACM: Access Control Manager
CCDB: Cloud Controller Database
DEA: Droplet Execution Agent
NATS: messaging bus between components
UAA: User Account and Authentication

Controls the entire system.
Health check, user authorization & authentication
and co-worker of cloud controller

Routing traffic from clients
to DEAs matching the request

Applications run on DEAs.

DMBSs and other middleware
are run on service nodes.

DEA

Application MongoDB

PostgreSQL

Redis

DEA

Application

DEA

Application

NATS

Service
gateway

Service
node

Service
node

Service
node

Service
gateway

Cloud
Controller

Health
Manager

CCDB ACM

UAAStager

Applications that users
access via web browsers

Fig. 2. Components of Cloud Foundry.

� NTT Technical Review

Feature Articles

system increases competitiveness against other pro-
viders because it reduces operating costs and
maximizes datacenter utilization, despite using ven-
dor-lock-in-free open source software.

4.2 Contributions to the community
The presence of active communities is indispens-

able in the long-term evolution of open source soft-
ware. We launched the Japan Cloud Foundry Group
in collaboration with NTT Communications and are
fostering a developers’ and users’ community of
Cloud Foundry in Japan [3]. In addition, we have
opened the source code created in the first two of our
abovementioned contributions (component reliability
and convenience) by committing them to the official
repository, and we also provide the know-how in
workshops.

5. Conclusion and future work

Cloud Foundry is promising open-source PaaS
software that has many good features. It enables us to
develop applications more easily, quickly, and flexi-
bly at a lower cost. However, if we use Cloud Found-

ry as it is, it will be difficult to compete in the cloud
computing market, which is becoming highly com-
petitive. Therefore, NTT is continuously developing
its own PaaS software by improving upon the features
of Cloud Foundry. In addition, we are investigating
possible future integration with other NTT products
such as Jubatus [4] and other open source software
such as Hadoop*2.

References

[1]	 Cloud Foundry. http://www.cloudfoundry.com
[2]	 NTT Communications Press release (in Japanese).
	 http://www.ntt.com/release/monthNEWS/detail/20120627.html
[3]	 NTT Press release (in Japanese).
	 http://www.ntt.co.jp/news2012/1202/120224a.html
[4]	 K. Horikawa, Y. Kitayama, S. Oda, H. Kumazaki, J. Han, H. Makino,

M. Ishii, K. Aoya, M. Luo, and S. Uchikawa, “Jubatus in Action:
Report on Realtime Big Data Analysis by Jubatus,” NTT Technical
Review, Vol. 10, No. 12, 2012.

	 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr2012
12fa5.html

*2	 Hadoop: Java software framework that supports distributed pro-
cessing of big data.

https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201212fa5.html

Vol. 10 No. 12 Dec. 2012 �

Feature Articles

Yudai Iwasaki
Engineer, Platform Technology SE Project,

NTT Software Innovation Center.
He received the B.A. and M.M.G. degrees from

Keio University, Kanagawa, in 2009 and 2011,
respectively. He joined NTT Information Shar-
ing Platform Laboratories in 2009. As a result of
organizational changes in April 2012, he is now
in NTT Software Innovation Center. His research
topics are the Semantic Web and cloud comput-
ing technology.

Takahiko Nagata
Senior Research Engineer, Cloud System SE

Project, NTT Software Innovation Center.
He received the B.E. and M.E. degrees from

the Faculty of Instrumentation Engineering,
Hiroshima University in 1993 and 1995, respec-
tively. Since joining NTT Information and Com-
munication Systems Laboratories in 1995, he has
been engaged in R&D of high-speed communi-
cation processing boards, reliable multicast
delivery systems, secure electronic voting sys-
tems, and secure file delivery systems. During
2005–2008, he worked in a department support-
ing the development of systems in NTT WEST.
He is currently engaged in R&D of cloud com-
puting technology. As a result of organizational
changes in April 2012, he is now in NTT Soft-
ware Innovation Center.Shunsuke Kurumatani

Researcher, Distributed Computing Technolo-
gy Project, NTT Software Innovation Center.

He received the B.A. degree in environmental
information from Keio University, Kanagawa, in
2009. Since joining NTT Information Sharing
Platform Laboratories in 2009, he has been
engaged in R&D of mobile cloud computing
technology and an application PaaS. His research
interests include web technology, accessibility,
and mobile cloud computing. As a result of orga-
nizational changes in April 2012, he is now in
NTT Software Innovation Center. He is a mem-
ber of the Institute of Electronics, Information
and Communication Engineers (IEICE).

Tsutomu Nomoto
Engineer, Cloud System SE Project, NTT

Software Innovation Center.
He received the B.E. and M.E. degrees in engi-

neering from the University of Electro-Commu-
nications, Tokyo, in 2008 and 2010, respectively.
Since joining NTT Information Sharing Platform
Laboratories in 2010, he has been engaged in
R&D of operations management software. As a
result of organizational changes in April 2012, he
is now in NTT Software Innovation Center.

Shinichi Nakagawa
Senior Research Engineer, Cloud System SE

Project, NTT Software Innovation Center.
He received the B.S. degree in physics from

Saitama University in 1987 and the M.S. degree
in physics from Chiba University in 1989. He
joined NTT in 1989. He is a member of IEICE.

