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1.   Introduction

1.1   Background of MapReduce
MapReduce is a framework for efficiently process-

ing the analysis of big data on a large number of serv-
ers. It was developed for the back end of Google’s 
search engine to enable a large number of commodity 
servers*� to efficiently process the analysis of huge 
numbers of webpages collected from all over the 
world [�].

On the basis of this research, software was devel-
oped*2 by the Apache project to implement MapRe-
duce, which was published as open source software 
(OSS) [2]. Since anyone can use OSS, this enabled 
many organizations, such as businesses and universi-
ties, to tackle big data analysis [3] in a way that only 
a few research institutes could do in the past owing to 
the complexity and high cost of the analytical sys-
tem.

In the NTT Group, there is also an increasing num-
ber of cases involving big data analysis in a wide 
range of situations such as back-end systems for 
search engines, analysis and reporting systems for 
communications traffic and logs, and advertising rec-
ommendation engines.

1.2   Mechanism of MapReduce
MapReduce provides an application programming 

interface (API) and middleware for developers who 
want to analyze big data. More specifically, when a 
developer defines processing that is compliant with 
two types of APIs, the map and reduce functions, 
processing is distributed efficiently for execution on 
multiple servers (Fig. 1). 

The mechanism of MapReduce ensures that the 
complexity involved in developing a system that 
works on numerous servers can be concealed from 
the developer. More specifically, this approach has 
the following advantages.

-  Scheduling: The servers that execute the pro-
cessing defined by the map and reduce functions 
are selected automatically by the middleware. 
The middleware selects a nearby server in which 
a chunk of the data is stored to be the map func-
tion execution server. This reduces the volume of 
data transfers and enables efficient processing. 

-  Synchronized processing: data transfers between 
servers for the map and reduce functions are 
synchronized.

-  Fault tolerance: To ensure that processing can 
continue overall even when several servers have 
failed, data backups and intermediate processing 
results are stored automatically. If a failure actu-
ally occurs, servers restart the processing using 
the backups and intermediate processing results. 

The scheduling and synchronization processing 
become more complex as the scale of the data and 
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*� Commodity server: An ordinary inexpensive personal-computer-
based server using commodity components.

*2 The OSS community is actively advancing development by add-
ing functions and fixing bugs.
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servers increases; thus, server breakdowns often 
occur. Since such complexities are concealed from 
the developer by MapReduce, he or she can focus on 
developing big data analysis methods. 

We have been researching and developing tech-
niques for achieving high-speed analytical processing 
by extending MapReduce. Increased efficiency is 
extremely important for achieving cost advantages 
such as improving the system’s response time and 
reducing the number of servers. Below, we introduce 
the features and suitable usage situations for three 
techniques that we have developed: PJoin, Map 
Multi-Reduce, and MRFusion.

2.   New techniques

2.1   PJoin
There are many developers who have used structured 

query language (SQL) when querying a database. 
Data manipulations that are frequently used with 
SQL include selecting, projecting, aggregating, and 
joining. Such data manipulations are frequently used 
in various situations. However, if databases that were 
designed some time ago are now given big data to 
handle, problems arise: the processing time is long 
and much time is necessary to obtain results. There-
fore, there is a demand for techniques that produce 
results even more efficiently, even with big data. 

PJoin can be used to join data efficiently. For 
example, if we analyze the log of an e-commerce site, 
we can obtain a best-seller product ranking for each 
profile by joining user data (profiles of all the users, 

such as their ages and genders) and purchase history 
data (purchase histories of all the products), as shown 
in Fig. 2. PJoin makes it possible to quickly obtain 
such results even more efficiently.

Previously proposed techniques*3 [4] that can be 
used to perform joining with MapReduce have draw-
backs. One drawback is constraints on the size of 
input data and another is the large volume of com-
munications*4 generated between servers, which 
forms bottlenecks, so the results cannot be obtained 
efficiently.

In the preprocessing phase, PJoin creates data that 
represent reference information between data to be 
joined*5 and rearranges the input data to enable effi-
cient joining. This overcomes the drawbacks of the 
previously proposed techniques and makes it possible 
to quickly obtain results efficiently, even when 
joining big data (Fig. 3).

Since a feature of PJoin is to perform quick and 
efficient joining by performing preprocessing, it is 
most suitable for use in situations such as querying 
repeated joins with large chunks of data.

2.2   Map Multi-Reduce
Map Multi-Reduce can be used to efficiently 

Fig. 1.   Flow of MapReduce processing.
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*3 Typical techniques are Memory-backed Join, Map-side Join, and 
Reduce-side Join. 

*4 Processing that hands over generated processing results between 
the map and reduce functions. 

*5 Only some of the rows, such as a primary key and external keys, 
are joined beforehand, as in the semi-join method in distributed 
database studies.
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perform aggregations in data manipulations such as 
SQL. When analyzing the log of an e-commerce site, 
this technique makes it possible to perform calcula-
tions efficiently to obtain total or average daily or 
seasonal sales from the purchase histories of all prod-
ucts, as shown in Fig. 4. 

To increase the speed of aggregation by MapReduce, 
it is common to reduce the volume of data being 
transferred between the map and reduce functions 
without changing the overall processing results*6. 
Previously proposed techniques*7 have various draw-
backs, such as placing a larger load on the developer, 
but attempts to reduce this load also reduce efficien-
cy. 

Our Map Multi-Reduce is an extension of the Map-
Reduce middleware. It enables the reduction of a 
wider range of data transferred between the map and 
reduce functions on the middleware side. This over-
comes the drawbacks of the previously proposed 
techniques, enabling results to be quickly obtained 
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Fig. 3.   PJoin processing time.
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Fig. 2.   Example of efficient joining by PJoin.

*6 Processing that is equivalent to the reduce function, executed be-
forehand by the server that executes the map function.

*7 Typical techniques are Combiner and In-mapper Combining.
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efficiently while keeping the load on the developer 
small (Fig. 5). When Map Multi-Reduce is used, 
there is an overhead*8 due to the reduction of the 
transferred data, so it is most suitable for use with 
data and processing where the reduction effect is 
expected to be large*9.

2.3   MRFusion
MRFusion is a technique that can be used to repeat 

analytical processing of the same data. For example, 
to optimize product recommendations on an e-com-
merce site, such as that shown in Fig. 6, it is neces-
sary to apply various kinds of analytical processing to 
histories of past purchases by trial and error. If the 
trial and error is not done sufficiently well, accurate 
recommendation models cannot be constructed and 
the e-commerce site will recommend products that 
the customer does not want. MRFusion ensures that 
the trial and error (iterative processing) for con-
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…

Fig. 4.   Example of efficient aggregation with Map Multi-Reduce.
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Fig. 5.   Map Multi-Reduce processing time.

*8 Overhead: Processing time that initially did not exist.
*9 In the example of the e-commerce site discussed in this article, 

the reduction effect is larger for the processing to obtain total 
sales for each season than that for daily total sales. 
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structing valuable models can be done quickly and 
efficiently. 

Usually with MapReduce, when a developer wants 
to repeat analytical processing efficiently as de- 

scribed above, he or she must personally create the 
processing logic to enable acceleration for each varia-
tion of the analytical and iterative processing every 
time. This imposes a large load on the developer and 
also hinders rapid introduction of the latest analysis 
algorithms. 

As an extended version of the MapReduce middle-
ware, MRFusion provides automatic detection of the 
same processing parts among multiple processing 
with the same data, combines them, and performs 
batch execution. This keeps the load on the developer 
small and enables the quick and efficient execution of 
multiple processing such as that described above 
(Fig. 7). Forcibly expanding the automatic detection 
range in this way can sometimes lead to side effects. 
Therefore, when MRFusion is being used, the most 
suitable usage method is to first apply it to small-
scale data, check for an acceleration effect and any 
side effects, and then, if there do not seem to be any 
side effects, apply it to big data.

 
 

Fig. 7.   MRFusion processing time.
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Fig. 6.   Example of efficient model construction with MRFusion.
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3.   Concluding remarks

Attention is focusing on cloud computing, and the 
importance of using big data is now being recognized. 
It is also becoming more and more necessary to have 
information processing systems that are capable of 
processing big data.

We introduced three techniques that we have imple-
mented to extend MapReduce and increase its speed. 
In the future, we plan to research and develop tech-
niques for efficient processing that can be used over a 
wider range, as well as various easy-to-use tech-

niques, to help create value-added services that use 
big data.
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