
� NTT Technical Review

1. Introduction

1.1 Background of MapReduce
MapReduce is a framework for efficiently process-

ing the analysis of big data on a large number of serv-
ers. It was developed for the back end of Google’s
search engine to enable a large number of commodity
servers*� to efficiently process the analysis of huge
numbers of webpages collected from all over the
world [�].

On the basis of this research, software was devel-
oped*2 by the Apache project to implement MapRe-
duce, which was published as open source software
(OSS) [2]. Since anyone can use OSS, this enabled
many organizations, such as businesses and universi-
ties, to tackle big data analysis [3] in a way that only
a few research institutes could do in the past owing to
the complexity and high cost of the analytical sys-
tem.

In the NTT Group, there is also an increasing num-
ber of cases involving big data analysis in a wide
range of situations such as back-end systems for
search engines, analysis and reporting systems for
communications traffic and logs, and advertising rec-
ommendation engines.

1.2 Mechanism of MapReduce
MapReduce provides an application programming

interface (API) and middleware for developers who
want to analyze big data. More specifically, when a
developer defines processing that is compliant with
two types of APIs, the map and reduce functions,
processing is distributed efficiently for execution on
multiple servers (Fig. 1).

The mechanism of MapReduce ensures that the
complexity involved in developing a system that
works on numerous servers can be concealed from
the developer. More specifically, this approach has
the following advantages.

- Scheduling: The servers that execute the pro-
cessing defined by the map and reduce functions
are selected automatically by the middleware.
The middleware selects a nearby server in which
a chunk of the data is stored to be the map func-
tion execution server. This reduces the volume of
data transfers and enables efficient processing.

- Synchronized processing: data transfers between
servers for the map and reduce functions are
synchronized.

- Fault tolerance: To ensure that processing can
continue overall even when several servers have
failed, data backups and intermediate processing
results are stored automatically. If a failure actu-
ally occurs, servers restart the processing using
the backups and intermediate processing results.

The scheduling and synchronization processing
become more complex as the scale of the data and

Feature Articles: Platform Technologies for
Open Source Cloud Big Data

Efficient Large-scale Data Analysis
Using MapReduce
Rui Kubo, Yoshifumi Fukumoto, and Makoto Onizuka

Abstract
Techniques for efficiently analyzing large-scale collections of data, such as log data or sensor data, are

attracting attention as important for improving the operating speed of businesses and enhancing the user
experience. This article outlines MapReduce, which is a typical framework for analyzing big data, and
introduces our techniques for achieving high-speed analytical processing by extending MapReduce.

*� Commodity server: An ordinary inexpensive personal-computer-
based server using commodity components.

*2 The OSS community is actively advancing development by add-
ing functions and fixing bugs.

Vol. 10 No. 12 Dec. 2012 2

Feature Articles

servers increases; thus, server breakdowns often
occur. Since such complexities are concealed from
the developer by MapReduce, he or she can focus on
developing big data analysis methods.

We have been researching and developing tech-
niques for achieving high-speed analytical processing
by extending MapReduce. Increased efficiency is
extremely important for achieving cost advantages
such as improving the system’s response time and
reducing the number of servers. Below, we introduce
the features and suitable usage situations for three
techniques that we have developed: PJoin, Map
Multi-Reduce, and MRFusion.

2. New techniques

2.1 PJoin
There are many developers who have used structured

query language (SQL) when querying a database.
Data manipulations that are frequently used with
SQL include selecting, projecting, aggregating, and
joining. Such data manipulations are frequently used
in various situations. However, if databases that were
designed some time ago are now given big data to
handle, problems arise: the processing time is long
and much time is necessary to obtain results. There-
fore, there is a demand for techniques that produce
results even more efficiently, even with big data.

PJoin can be used to join data efficiently. For
example, if we analyze the log of an e-commerce site,
we can obtain a best-seller product ranking for each
profile by joining user data (profiles of all the users,

such as their ages and genders) and purchase history
data (purchase histories of all the products), as shown
in Fig. 2. PJoin makes it possible to quickly obtain
such results even more efficiently.

Previously proposed techniques*3 [4] that can be
used to perform joining with MapReduce have draw-
backs. One drawback is constraints on the size of
input data and another is the large volume of com-
munications*4 generated between servers, which
forms bottlenecks, so the results cannot be obtained
efficiently.

In the preprocessing phase, PJoin creates data that
represent reference information between data to be
joined*5 and rearranges the input data to enable effi-
cient joining. This overcomes the drawbacks of the
previously proposed techniques and makes it possible
to quickly obtain results efficiently, even when
joining big data (Fig. 3).

Since a feature of PJoin is to perform quick and
efficient joining by performing preprocessing, it is
most suitable for use in situations such as querying
repeated joins with large chunks of data.

2.2 Map Multi-Reduce
Map Multi-Reduce can be used to efficiently

Fig. 1. Flow of MapReduce processing.

Input data

Map function

… … … …

Reduce function

Distributed file system Shuffle
(data transfer)

Processing
results

*3 Typical techniques are Memory-backed Join, Map-side Join, and
Reduce-side Join.

*4 Processing that hands over generated processing results between
the map and reduce functions.

*5 Only some of the rows, such as a primary key and external keys,
are joined beforehand, as in the semi-join method in distributed
database studies.

3 NTT Technical Review

Feature Articles

perform aggregations in data manipulations such as
SQL. When analyzing the log of an e-commerce site,
this technique makes it possible to perform calcula-
tions efficiently to obtain total or average daily or
seasonal sales from the purchase histories of all prod-
ucts, as shown in Fig. 4.

To increase the speed of aggregation by MapReduce,
it is common to reduce the volume of data being
transferred between the map and reduce functions
without changing the overall processing results*6.
Previously proposed techniques*7 have various draw-
backs, such as placing a larger load on the developer,
but attempts to reduce this load also reduce efficien-
cy.

Our Map Multi-Reduce is an extension of the Map-
Reduce middleware. It enables the reduction of a
wider range of data transferred between the map and
reduce functions on the middleware side. This over-
comes the drawbacks of the previously proposed
techniques, enabling results to be quickly obtained

PJoin

5

4

3

2

1

0

Greatly reduced

Previous technique

* Evaluation environment
 - Linux (CPU: 2.8 GHz; memory: 8 GB) x 50 servers
 * Benchmark
 - Joining of three web access log
 tables (150 GB, 75 GB, and 16
 GB)

P
ro

ce
ss

in
g

tim
e

(m
in

ut
es

)

CPU: central processing unit

Fig. 3. PJoin processing time.

Purchase history data

User data

User ID

Purchase date User ID Purchased articles

chono

terauchi

sakamoto

murata

Gender Age …

19

45

32

56

Male

Female

Female

Male Best-seller ranking for
females
1. Handbags
2. Mobile phones
3. Shoes

Best-seller ranking by
gender and generation

Users and purchase
 histories, joined by user ID

…

2012/7/1 13:05

2012/7/1 13:12

2012/7/1 13:20

2012/7/1 13:21

sakamoto

abe

terauchi

takahashi

Hats

Shoes

Beans

Personal computers

Best-seller ranking for
teenagers
1. Pencils
2. Automobiles
3. Baseball gloves

…

…

Best-seller ranking for males

Fig. 2. Example of efficient joining by PJoin.

*6 Processing that is equivalent to the reduce function, executed be-
forehand by the server that executes the map function.

*7 Typical techniques are Combiner and In-mapper Combining.

Vol. 10 No. 12 Dec. 2012 4

Feature Articles

efficiently while keeping the load on the developer
small (Fig. 5). When Map Multi-Reduce is used,
there is an overhead*8 due to the reduction of the
transferred data, so it is most suitable for use with
data and processing where the reduction effect is
expected to be large*9.

2.3 MRFusion
MRFusion is a technique that can be used to repeat

analytical processing of the same data. For example,
to optimize product recommendations on an e-com-
merce site, such as that shown in Fig. 6, it is neces-
sary to apply various kinds of analytical processing to
histories of past purchases by trial and error. If the
trial and error is not done sufficiently well, accurate
recommendation models cannot be constructed and
the e-commerce site will recommend products that
the customer does not want. MRFusion ensures that
the trial and error (iterative processing) for con-

…
…

…
…

…

…
…

…
…

Sales analyses by day and by season

Daily analysis (2012/7/1)
Total sales: ¥1,210,000
Number of sales: 220
Average sales: ¥5500
…

Purchase history data

Purchase history
aggregation

Purchase
date

User ID Purchase
amount

…

…

2012/7/1 13:05
2012/7/1 13:12
2012/7/1 13:20
2012/7/1 13:21

sakamoto
abe
terauchi
takahashi

¥11,222
¥1024
¥133,333
¥34,333

 Seasonal analysis (2012/Q1)
Total sales: ¥77,777,777
Number of sales: 1111
Average sales: ¥70,007
…

Fig. 4. Example of efficient aggregation with Map Multi-Reduce.

Map Multi-Reduce

5

6

7

4

3

2

1

0

Greatly reduced

Previous technique

 * Evaluation environment
 - Linux (CPU: 2.8 GHz; memory: 8 GB) x 90 servers
 * Benchmark
 - Word frequency calculations
 from TREC data (0.5 TB)

P
ro

ce
ss

in
g

tim
e

(m
in

ut
es

)

Fig. 5. Map Multi-Reduce processing time.

*8 Overhead: Processing time that initially did not exist.
*9 In the example of the e-commerce site discussed in this article,

the reduction effect is larger for the processing to obtain total
sales for each season than that for daily total sales.

5 NTT Technical Review

Feature Articles

structing valuable models can be done quickly and
efficiently.

Usually with MapReduce, when a developer wants
to repeat analytical processing efficiently as de-

scribed above, he or she must personally create the
processing logic to enable acceleration for each varia-
tion of the analytical and iterative processing every
time. This imposes a large load on the developer and
also hinders rapid introduction of the latest analysis
algorithms.

As an extended version of the MapReduce middle-
ware, MRFusion provides automatic detection of the
same processing parts among multiple processing
with the same data, combines them, and performs
batch execution. This keeps the load on the developer
small and enables the quick and efficient execution of
multiple processing such as that described above
(Fig. 7). Forcibly expanding the automatic detection
range in this way can sometimes lead to side effects.
Therefore, when MRFusion is being used, the most
suitable usage method is to first apply it to small-
scale data, check for an acceleration effect and any
side effects, and then, if there do not seem to be any
side effects, apply it to big data.

Fig. 7. MRFusion processing time.

With MRFusion

10

12

14

16

18

8

6

4

2

0

Greatly reduced

Without MRFusion

 * Evaluation environment
 - Linux (CPU: 2.6 GHz; memory: 8 GB) x 20 servers
 * Benchmark
 - Construction of recognition model for
 handwritten character
 data (20 GB)

P
ro

ce
ss

in
g

tim
e

(m
in

ut
es

)

Recommended products
for each user and product

Construction of
recommendation

model from purchase history

Purchase history data

Purchase date User ID Purchased
articles

2012/7/1 13:05 sakamoto

Personal
computers

…

…

Hats

Shoes
Beans

takahashi

terauchi
abe

2012/7/1 13:21

2012/7/1 13:20
2012/7/1 13:12

 Recommended products for Mr.
Takahashi
- Air conditioners
- Electric fans
- Hand fans
…

 Products users want to buy
together with a personal computer
- Printers
- Liquid-crystal displays
- Digital cameras
…

Fig. 6. Example of efficient model construction with MRFusion.

Vol. 10 No. 12 Dec. 2012 6

Feature Articles

Rui Kubo
Research Engineer, Distributed Computing

Technology Project, NTT Software Innovation
Center.

He received the M.S. degree in information
systems from the University of Electro-Commu-
nications, Tokyo, in 2003. Since joining NTT in
2003, he has been engaged in R&D of sensor
networks and distributed computing. As a result
of organizational changes in July 20�2, he is now
in NTT Software Innovation Center. He is a
member of the Japanese Society for Artificial
Intelligence.

Makoto Onizuka
Distinguished Technical Member, Distributed

Computing Technology Project, NTT Software
Innovation Center and Visiting Associate Profes-
sor at the Graduate School of Information Sys-
tems, University of Electro-Communications.

He received the Ph.D. degree in computer sci-
ence from Tokyo Institute of Technology in 2007.
His primary research interests include systems
and algorithms for data-intensive cloud comput-
ing.

Yoshifumi Fukumoto
Research Engineer, Distributed Computing

Technology Project, NTT Software Innovation
Center.

He received the B.E. degree from the Faculty
of Environment and Information Studies from
Keio University, Kanagawa, in 2009. Since join-
ing NTT in 2009, he has been engaged in R&D
of distributed computing and distributed storage.
As a result of organizational changes in July
20�2, he is now in NTT Software Innovation
Center. He is a member of the Database Society
of Japan.

3. Concluding remarks

Attention is focusing on cloud computing, and the
importance of using big data is now being recognized.
It is also becoming more and more necessary to have
information processing systems that are capable of
processing big data.

We introduced three techniques that we have imple-
mented to extend MapReduce and increase its speed.
In the future, we plan to research and develop tech-
niques for efficient processing that can be used over a
wider range, as well as various easy-to-use tech-

niques, to help create value-added services that use
big data.

References

[�] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” OSDI ’04.

 http://static.usenix.org/events/osdi04/tech/full_papers/dean/dean_
html/index.html

[2] Apache Hadoop. http://hadoop.apache.org/
[3] Hadoop Wiki. http://wiki.apache.org/hadoop/PoweredBy
[4] J. Lin and C. Dyer, “Data-Intensive Text Processing with MapRe-

duce,” Morgan and Claypool Publishers, 20�0.

http://static.usenix.org/events/osdi04/tech/full_papers/dean/dean_html/index.html

