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1.   Introduction

Data streams have attracted interest in various 
fields (theory, databases, data mining, and network-
ing) because of their many important applications 
including financial analysis, sensor network monitor-
ing, moving object trajectories, web click-stream 
analysis, and network traffic analysis. Efficient moni-
toring of time-series data streams is a fundamental 
requirement for these applications, and subsequence 
matching is an important technique for this. We con-
sider two problems with subsequence matching over 
data streams: the similarity between a query sequence 
and data stream and the similarity between data 
streams. In the former problem, one is a fixed 
sequence and the other is an evolving sequence. This 
approach works well if we have already determined 
the patterns we want to find. By contrast, the latter 
problem focuses on co-evolving sequences and 
reveals hidden patterns between them without pre-
liminary knowledge.

Unlike the traditional setting, the sampling rates of 
streams are often different, and their time period var-
ies in practical situations. Subsequence matching 
should address asynchronous data and should be 
robust against noise and provide scaling along the 
time axis. We focus on dynamic time warping (DTW) 
as a similarity measure for subsequence matching 
over data streams. DTW is typically applied to limit-
ed situations in an offline manner. Since data streams 

arrive online at high bit rates and are potentially 
unbounded in size, the computation time and memory 
space increase greatly. Ideally, we need a solution 
that can return correct results without any omissions, 
even at high speed.

This article presents the streaming algorithms 
SPRING and CrossMatch for subsequence matching. 
These are one-pass algorithms that are strictly based 
on DTW and that guarantee correct results without 
any omissions. We describe the basic ideas behind 
each algorithm and show how these algorithms work 
in relation to data stream processing. Moreover, we 
focus on sensor network monitoring as an application 
of subsequence matching and discuss the differences 
between the two algorithms.

2.   Background

2.1   Related work
Similarity search over time-series data has been 

studied for many years. Most methods focus on simi-
larity queries for static datasets with a query sequence. 
Specifically, given a query sequence and a distance 
threshold, a similarity query finds all the sequences or 
subsequences that are similar to the query sequence. 
The basic idea is to transform the sequence into the 
frequency domain using a discrete Fourier transform 
(DFT) and then to extract the few features from the 
resultant frequency-domain sequence [1]. Euclidean 
distance is used as a similarity measure. Other feature 
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extraction functions include discrete wavelet trans-
form (DWT) [2], singular value decomposition 
(SVD) [3], piecewise aggregate approximation (PAA) 
[4], and adaptive piecewise constant approximation 
(APCA) [5]. These functions have been proposed to 
reduce the number of dimensions of the time-series.

Since the Euclidean distance treats sequence ele-
ments independently, it cannot be used to calculate 
the distance between sequences whose lengths are 
different. DTW has been adopted to overcome these 
problems [6]; it is a widely used similarity measure 
that allows time-axis scaling. The DTW distance can 
be computed using dynamic programming tech-
niques. Therefore, DTW is typically a much costlier 
approach than the Euclidean distance. To address the 
cost issue, several methods have been proposed that 
use a lower bound to refine the results and envelope 
techniques to constrain the computation cells [7]–
[10].

Similarity search over data streams has recently 
attracted more research interest. In contrast to a set-
ting where the data sequences are fixed, data streams 
arrive irregularly and are frequently updated. There-
fore, incremental computation techniques that use the 
previous feature when computing the new feature are 
required. Several discriminative methods have been 
proposed for subsequence matching with a query 
sequence. These include subsequence matching 
based on prediction [11], approximate subsequence 
matching with data segmentation and piecewise line 
representation [12], subsequence matching support-
ing shifting and scaling in the time and amplitude 
domains [13], and subsequence matching based on 
DTW with batch filtering [14].

Another important area is pattern discovery 
between data streams. Mueen et al. [15] presented the 
first online motif discovery algorithm to accurately 

monitor and maintain motifs, which represent repeat-
ed subsequences in time-series, in real time. Papad-
imitriou et al. [16] proposed an algorithm for discov-
ering optimal local patterns, which concisely describe 
the main trends in data streams.

In summary, there have been many previous studies 
on similarity search over data streams; however, none 
of them have addressed effective subsequence match-
ing based on DTW. We formally define two problems 
for subsequence matching and present efficient and 
effective algorithms to solve them.

2.2   DTW
DTW is a transformation that allows sequences to 

be stretched along the time axis to minimize the dis-
tance between them. The DTW distance of two 
sequences is the sum of the tick-to-tick distances after 
the two sequences have been optimally warped to 
match each other. An illustration of DTW is shown in 
Fig. 1. The left figure is the alignment by DTW for 
measuring the DTW distance. To align two sequences, 
we construct a time warping matrix as shown in the 
right figure (the warping scope w will be described in 
section 4.1). The warping path is a set of grid cells in 
the time warping matrix; this set of grid cells repre-
sents the optimal alignment between the sequences. 
Consider two sequences, X = (x1, x2, ..., xn) of length 
n and Y = (y1, y2, ..., ym) of length m. Their DTW dis-
tance D(X, Y ) is defined as

D(X, Y ) = d(n, m )

d(i, j ) = ||xi – yj|| + min 




d(i, j – 1)
d(i – 1, j)

d(i – 1, j – 1) � (1)

d(0, 0 ) = 0, d(i, 0 ) = d(0, j ) = ∞

(i = 1, ..., n; j = 1, ..., m;).

Note that ||xi – yj|| = (xi - yj)2 is the distance between 
two numerical values in cell (i, j) of the time warping 
matrix. Note that other choices (e.g., absolute differ-
ence ||xi – yj|| = |xi - yj|) can also be used; the algo-
rithms we present in this article are completely inde-
pendent of the choice made. Specifically, DTW 
requires O(nm) time because the time warping matrix 
consists of nm elements. Note that the space com-
plexity is O(m) because the algorithm needs only two 
columns (i.e., the current and previous columns) of 
the time warping matrix to compute the DTW dis-
tance.

In the problem of subsequence matching with a 

Fig. 1.   Illustration of DTW.
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query sequence, given an evolving sequence X = (x1, 
x2, ..., xn) and a fixed-length query sequence Y = (y1, 
y2, ..., ym), we want to find the subsequences of X that 
are similar to Y in the sense of the DTW distance. By 
contrast, in the problem of subsequence matching 
between data streams, given two evolving sequences 
X = (x1, x2, ..., xn) and Y = (y1, y2, ..., ym), we want to 
find the subsequence pairs, namely the common local 
patterns over data streams. We will give the exact 
definitions for these problems later (in sections 3.1 
and 4.1). In both settings, naïve ways of subsequence 
matching require unfeasible computation time and 
memory consumption in data stream processing. We 
show that our approaches offer considerable improve-
ment without loss of accuracy.

3.   Subsequence matching with a query sequence

3.1   Problem definition
Data stream X is a discrete, semi-infinite sequence 

of numbers x1, x2, …, xn, …, where xn is the most 
recent value. Note that n increases with every new 
time-tick. Let X [is : ie] be the subsequence of X that 
starts from time-tick is and ends at ie. The subse-
quence matching problem is to find the subsequence 
X [is : ie] that is highly similar to a fixed-length query 
sequence Y (i.e., the subsequence with a small value 
of D(X [is : ie], Y). However, a subtle point should be 
noted: whenever the query Y matches a subsequence 
of X (e.g., X [is : ie]), we expect that there will be sev-
eral other matches with subsequences that heavily 
overlap the local minimum best match. Overlaps pro-
vide the user with redundant information and would 
slow down the algorithm since all useless solutions 
are tracked and reported. In our solution, we discard 
all these extra matches. Specifically, the problem we 
want to solve is as follows:

Problem 1 Given a stream X (that is, an evolving data 
sequence, which at the time of interest has length n), 
a query sequence Y of fixed-length m, and a distance 
threshold e, report all subsequences X [is : ie] such 
that

1.	� the subsequences are close enough to the query 
sequence: D(X [is : ie], Y) ≤ e, and

2.	� among several overlapping matches, report only 
the local minimum; that is, D(X [is : ie], Y) is the 
smallest value from the set of overlapping sub-
sequences that satisfy the first condition.

Hereafter we use the term optimal subsequences to 
refer to subsequences that satisfy both conditions.

3.2   SPRING
The most straightforward (and slowest) solution to 

this problem is to consider all possible subsequences 
X [is : ie] (1 ≤ is ≤ ie ≤ n) and apply the standard DTW 
dynamic programming algorithm, which requires 
O(n2) matrices. The time complexity would be 
O(n3m) (or O(n2m) per time-tick). This method is 
extremely expensive. Moreover, it cannot be extended 
to the streaming case. To solve the problem, we there-
fore proposed SPRING [17], which is an efficient 
algorithm. SPRING uses only a single matrix and 
detects optimal subsequences in stream processing.

3.2.1   Basic ideas
Our solution to the problem is based on two ideas. 

The first idea is star-padding, in which sequence Y is 
prefixed with a special value (“*”) that always gives 
zero distance. This value stands for the don’t care 
interval, that is, the interval (−∞ : +∞). 

Definition 1 (Star-padding) Given a query sequence 
Y, star-padding of Y is defined as follows.

Y’ = (y0, y1, y2, ..., ym)
� (2)
y0 = (+∞ : −∞)

We use Y’ to compute the DTW distances of Y and 
subsequences of X, instead of operating on the origi-
nal sequence of Y. 

Given a sequence Y = (y1, y2, ..., ym), we have the 
star-padding of Y. Let X be a sequence of length n. We 
can then derive the minimum distance D(X [is : ie], Y) 
from the matrix of X and Y’.

D(X[is : ie], Y) = d(ie, m) =min(d(i, m))

d(i, j) = ||xi – yj|| + dbest

dbest = min 




d(i, j – 1)
d(i – 1, j)

d(i – 1, j – 1)
� (3)

d(i, 0) = 0, d(0, j ) = ∞

(i = 1, ..., n; j = 1, ..., m).

Star-padding dramatically reduces both time and 
space since we need to update only O(m) numbers per 
time-tick to derive the minimum distance.

Star-padding is a good first step, and it can tell us 
(a) where the subsequence match ends and (b) what 
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the resulting distance is. However, such applications 
often also need the starting time-tick of the match. 
Our second idea is to use a subsequence time warping 
matrix (STWM): we augment the time warping 
matrix and record the starting position of each 
candidate subsequence.

Definition 2 (STWM) The STWM contains the 
value d(i, j), which is the best distance to match the 
prefix of length i from X with the prefix of length j 
from Y, and the starting position s(i, j) corresponding 
to d(i, j). The starting position is computed as

s(i, j) = 




s(i, j – 1)
s(i – 1, j)

s(i – 1, j – 1)

(d(i, j – 1) = dbest)
(d(i – 1, j) = dbest)

(d(i – 1, j – 1) = dbest)
� (4)

We obtain the starting position of D(X [is : ie], Y) as

is = s(ie, m).� (5)

We update the starting position accompanied by the 
distance value as well as the distance value itself. By 
using the matrix, we can identify which subsequence 
gave the minimum distance during stream process-
ing.

3.2.2   Algorithm
The way SPRING detects optimal subsequences 

is shown in Fig. 2. SPRING is carefully designed to 
(a) guarantee no false dismissals for the second 
condition of Problem 1 and (b) report each match 
as early as possible (detailed proofs are given in 
[17]). For each incoming data point xn, we first 
incrementally update the m distance values d(n, j) 
and determine the m starting positions s(n, j). The 

algorithm reports the subsequence after confirming 
that the current optimal subsequence cannot be 
replaced by the upcoming subsequences. That is, 
we report the subsequence that gives the minimum 
distance dmin when the d(n, j) and s(n, j) arrays sat-
isfy

∀j, d(n, j) ≥ dmin V s(n, j) > ie, � (6)

which means that the captured optimal subsequence 
cannot be replaced by the upcoming subsequences. 
Otherwise, the upcoming candidate subsequences 
would not overlap the captured optimal subsequence. 
We initialize dmin and the d(n, j) arrays after the out-
put.

Example 1 Assume that e = 15, X = (5, 12, 6, 10, 6, 
5, 13), and Y = (11, 6, 9, 4) in Fig. 3. The cell (i, j) of 
the matrix contains d(i, j) and s(i, j). At i = 3, we 
found candidate subsequence X[2 : 3] whose distance 
d(3, 4) = 14 below e. At i = 4, although the distance 
d(4, 4) = 38 is larger than e, we do not report X [2 : 3] 
since d(4, 3) = 2, which means X [2 : 3] can be 
replaced by the upcoming subsequences. We then 
capture the optimal subsequence X [2 : 5] at i = 5. X 
[2 : 5] is reported at i = 7 since we now know that 
none of the upcoming subsequences will be the opti-
mal subsequence. Finally, because subsequences 
starting from i = 7 may be candidates for the next 
group, we do not initialize d(7, 1).

4.   Subsequence matching between data streams

4.1   Problem definition
We have focused on finding subsequences similar 

to a query sequence. In this section, we address sub-
sequence matching between data streams. That is, 
both sequences X and Y are co-evolving data streams, 
and we want to identify common local patterns 
between them.

Like data stream X, data stream Y is a discrete, 
semi-infinite sequence of numbers y1, y2, …, ym, …, 
where ym is the most recent value. Note that m 
increases with every new time-tick. Let Y [js : je] be 
the subsequence of Y that starts from time-tick js and 
ends at je. The lengths of X [is : ie] and Y [js : je] are lx 
= ie – is + 1 and ly = je – js + 1, respectively. The goal 
is to find the common local patterns of sequences by 
data stream processing based on DTW. That is, we 
want to detect subsequence pairs that satisfy

D(X [is : ie],Y [js : je]) ≤ eL(lx,  ly), � (7)

Fig. 2.   �Illustration of SPRING algorithm, which uses only a 
single matrix to capture all qualifying sub­­se­
quences.

Report X [ is: ie ] Second subsequence

i = 1 i = is i = ie

Y'
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where L is a function that sets the length of the subse-
quence. The DTW distance increases as the subse-
quence length increases since it is the sum of the 
distances between elements. Therefore, unlike the 
problem where sequence Y is fixed, the distance 
threshold should be proportional to the subsequence 
length to detect the subsequence pairs without 
depending on the subsequence length. Accordingly, 
we set the distance threshold at eL(lx, ly). In this arti-
cle, the algorithm uses L(lx,  ly) = (lx+ ly)/2, which is 
the average length of the two subsequences, but the 
user can make any other choice (e.g., L(lx, ly) = 
max(lx,  ly) or L(lx,  ly) = min(lx,  ly)).

Equation (7) allows us to detect subsequence pairs 
without regard to the subsequence length. In practice, 
however, we might detect shorter and meaningless 
matching pairs owing to the influence of noise. We 
introduce the concept of subsequence match length to 
enable us to discard such meaningless pairs. We for-
mally define the cross-similarity between X and Y, 
which indicates common local patterns.

Definition 3 (Cross-similarity) Given two sequences 
X and Y, a distance threshold e, and a threshold of 
subsequence length lmin, X [is : ie] and Y [js : je] have 
the property of cross-similarity if this sequence pair 
satisfies the condition

D(X [is : ie],Y [js : je]) ≤ e (L(lx,  ly)– lmin). � (8)

The minimum length lmin of subsequence matches 
should be given by the users. The subsequences that 
satisfy this equation are guaranteed to have lengths 

exceeding lmin. 

In addition to subsequence matching with a query 
sequence, we need to consider several other matches 
that strongly overlap the local minimum best match. 
Specifically, in this setting, an overlap is simply 
where two subsequence pairs have a common align-
ment, which is defined as follows:

Definition 4 (Overlap) Given two warping paths for 
subsequence pairs of X and Y, their overlap is defined 
as the condition where the paths share at least one 
element.

Our solution for subsequence matching between data 
streams is to detect the local best subsequences from 
the set of overlapping subsequences. Thus, our goal is 
to find the best match of cross-similarity.

Problem 2 Given two sequences X and Y, thresholds 
e, and lmin, report all subsequence pairs X [is : ie] and 
Y [js : je] that satisfy the following conditions.

1.	� X [is : ie] and Y [js : je] have the property of cross-
similarity.

2.	� D(X [is : ie], Y [js : je])−e (L(lx, ly)− lmin) is the 
minimum value among the set of overlapping 
subsequence pairs that satisfies the first condi-
tion.

Hereafter we use the term qualifying subsequence 
pairs to refer to pairs that satisfy the first condition, 
and we use optimal subsequence pairs to refer to pairs 
that satisfy both conditions.

Fig. 3.   �Illustration of SPRING. The upper numbers show the distance in each element of the matrix. The numbers in 
parentheses show the starting position.
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Typically, new elements in data streams are usually 
more significant than those in the distant past. To 
limit the number of cells in the matrix and focus on 
recent elements, we utilize a global constraint for 
DTW, namely the Sakoe-Chiba band [18] that 
restricts the warping path to the |i − j| ≤ w range (i.e., 
the gray cells in Fig. 1), where w is called the warping 
scope. In data stream processing, we compute the 
cells from a recent element to an earlier element of 
the warping scope w. If m = n, the warping scope is 
exactly equal to the Sakoe-Chiba band.

4.2   CrossMatch
To solve the problem of cross-similarity, the most 

straightforward solution is to consider all possible 
subsequences of X [is : ie] (1 ≤ is < ie ≤ n), and all pos-
sible subsequences of Y [js : je] (1 ≤ js < je ≤ m) in the 
warping scope and apply the standard DTW dynamic 
programming algorithm. Let w be the warping scope 
(the gray cells in the figure). The solution requires 
O(nw2+mw2) time (per update) and space because it 
has to handle a total of O(nw+mw) matrices to com-
pute the DTW distance. If we prune dissimilar subse-
quence pairs and reduce the number of matrices, the 
distance computations become much more efficient. 
Our method, CrossMatch [19], finds good matches in 
a single matrix efficiently by pruning the subse
quences (see Fig. 4).

4.2.1   Basic ideas 
To identify the dissimilar subsequences early, we 

propose computing the DTW distance indirectly by 
using a scoring function. The scoring function com-
putes the maximum cumulative score corresponding 
to the DTW distance with a score matrix. The score is 
determined by accumulating the difference between 
the threshold and the distance between the elements 
in the score matrix. Thus, we can recognize a dis-
similar subsequence pair since the score has a nega-
tive value if the subsequence pair does not satisfy the 
first condition of Problem 2. The scoring function 
initializes the negative score to zero and then restarts 
the computation from the cell. This operation allows 
us to discard unqualifying, non-optimal subsequence 
pairs.

Definition 5 (Score matrix) Given two sequences, X 
= (x1, x2, ..., xn) and Y = (y1, y2, ..., ym), and the warp-
ing scope w, score V(X [is : ie], Y [js : je]) of X [is : ie] 
and Y [js : je] defined as follows:

V(X [is : ie],Y [js : je]) = v(ie, je)

v(i, j) = max 








ebv – ||xi – yj|| + v(i, j – 1)
ebh – ||xi – yj|| + v(i – 1, j)

ebd – ||xi – yj|| + v(i – 1, j – 1)

0

� (9)

v(0, 0) =v(i, 0) =v(0, j) = 0
(i =1, ..., n; j =1, ..., m;
n – w ≤ i ≤ n; m – w ≤ j ≤ m;).

Symbols bv, bh, and bd in Eq. (9) indicate a weight 
function for each direction, which makes transforma-
tion between the score and the DTW distance possi-
ble. These values are determined as subsequence 
length L. For example, for L(lx, ly) = (lx+ly)/2, we 
obtain bv = bh =1/2 and bd =1, respectively. The scor-
ing function is designed so that the sum of the weights 
on the warping path is equal to subsequence length L. 
Therefore, it guarantees transformation between the 
DTW distance and the score, and it finds the qualify-
ing subsequence pairs without any omissions 
(detailed proofs are given in [19]). The DTW distance 
of a subsequence pair is computed from the score and 
the subsequence length as

D(X[is:ie],Y[js:je]) = eL(lx,ly) – V(X[is:ie],Y[js:je])
� (10)

s.t. V(X[is:ie],Y[js:je])> 0.

Fig. 4.   �Illustration of CrossMatch. Black cells indicate the 
warping paths of the optimal subsequence pairs, 
and gray cells indicate the warping scope.
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Equation (10) holds for the time warping and the 
score matrices, which have the same starting position 
(is, je).

The scoring function tells us the subsequence 
match ends and the subsequence score. However, we 
lose the information about the starting position of the 
subsequence. This is the motivation behind our sec-
ond idea, a position matrix: we store the starting posi-
tion to keep track of qualifying subsequence pairs in 
a streaming fashion.

Definition 6 (Position matrix) The position matrix 
stores the starting position of each subsequence pair. 
The starting position p(i, j) corresponding to score 
v(i, j) is computed as:

p(i,j) = 











p(i, j– 1)  (v(i, j – 1) ≠ 0 L v (i, j)

p(i– 1, j) (v(i, j – 1) ≠ 0 L v(i, j)

p(i– 1, j– 1) (v(i– 1, j – 1) ≠ 0 L v(i, j)

= ebv – ||xi – yj|| + v(i, j – 1))

= ebh – ||xi – yj|| + v(i– 1, j))

= ebd – ||xi – yj|| + v(i– 1, j – 1))
(i, j)           (otherwise)

�

(11)

The starting position is described as a coordinate 
value; p(ie, je) indicates the starting position (is, js) of 
the subsequence pair X [is : ie] and Y [js : je]. We can 
identify the optimal subsequence that gives the maxi-
mum score during stream processing by using the 
score and position matrices. Moreover, the starting 
position of the shared cell is maintained through the 

subsequent alignments because we repeat the opera-
tion, which maintains the starting position of the 
selected previous cell. Thus, we know the overlap-
ping subsequence pairs from the fact that the starting 
positions match.

4.2.2   Algorithm
We now have all the pieces needed to answer the 

question: how do we find the optimal subsequence 
pairs? Every time xn or ym is received at time-tick n or 
m, our CrossMatch algorithm incrementally updates 
the score and starting position and retains the end 
position. We use a candidate array to find the optimal 
subsequence pair, and we store the best pair in a set 
of overlapping subsequence pairs. CrossMatch 
reports the optimal subsequence pair after confirming 
that it cannot be replaced by the upcoming subse-
quence pairs. The upcoming candidate subsequence 
pairs do not overlap the captured optimal subse-
quence pair if the starting positions in the position 
matrix satisfy the condition:

(∀i, p(i, m) = Cs) L (∀j, p(n, j) ≠ Cs). � (12)

CrossMatch requires only O(w) (i.e., constant) time 
(per update) and space. This is a great reduction 
because the straightforward solution requires 
O(nw2+mw2) time (per update) and space.

Example 2 Assume that we have two sequences X = 
(5, 12, 6, 10, 3, 18) and Y = (11, 9, 4, 2, 9, 13) as well 
as e = 14, lmin = 2, and w = 3 in Fig. 5. To simplify our 
example with no loss of generality, we assume that xi 
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Fig. 5.   �Example of cross-similarity detection. The lightly shaded cells signify cross-similarity, and the dark cell in each matrix 
shows the best match.
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and yj arrive alternately. At each time-tick, the 
algorithm updates the scores and the starting posi-
tions. At i = 4, we update the cells from (4, 1) to (4, 
3) and identify a candidate subsequence, X[2 : 4] and 
Y[1 : 3], starting at (2, 1), whose score v(4, 3) = 36 is 
greater than elmin. At j = 4, we update the cells from 
(1, 4) to (4, 4). Although we detect no subsequences 
satisfying the condition, we do not report the subse-
quence X[2 : 4] & Y[1 : 3] since this pair might be 
replaced by upcoming subsequences. We then cap-
ture the optimal subsequence pair X[2 : 5] & Y[1 : 4] 
at i = 5. Finally, we report the subsequence as the 
optimal subsequence at j = 6 since we can confirm 
that none of the upcoming subsequences can be opti-
mal.

5.   Applications of SPRING and CrossMatch

One example of subsequence matching application 
is sensor network monitoring. In sensor networks, 

sensors send their readings frequently. Each sensor 
produces a stream of data, and these streams need to 
be monitored and combined to detect changes in the 
environment that may be of interest to users. Users 
are likely to be interested in one or more sensors 
within a particular spatial region. These interests are 
expressed as trends and similar patterns.

The optimal subsequences that SPRING detected in 
temperature and humidity datasets are shown in 
Fig. 6. The problem that SPRING solves is very 
simple. Users assign the pattern for which they wish 
to search. The detected subsequences may be normal 
patterns, abnormal patterns, frequent patterns, or 
trends depending on the query sequences.

By contrast, CrossMatch focuses on the commonal-
ity between data sequences and reveals hidden local 
patterns. The left graphs in Fig. 7 show similar subse-
quence pairs in each dataset (i.e., the left and center 
graphs) as the optimal warping paths. These pairs can 
be frequent patterns or trends and may be query 
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Fig. 6.   �Discovery of similar subsequences using SPRING. The left and right columns show the query and data sequences, 
respectively.



Regular Articles

� NTT Technical Review

sequences that users want to search for in the future. 
This focuses on the similarities of datasets. If we look 
at the dissimilarities, we can see different applica-
tions. For example, the result in Fig. 7(b) can be 
interpreted as showing that two sensors behaving in 
the same way have dissimilar intervals. In this case, 
we can assume a sensor failure and an anomaly in the 
environment.

6.   Conclusion

In this article, we summarized subsequence match-
ing and presented two one-pass algorithms, SPRING 
and CrossMatch, for subsequence matching over data 
streams. Both algorithms process at high-speed, 
exhibit constant time and space consumption, and 
guarantee correct results. Subsequence matching is 
applied in several domains, and DTW is a powerful 
similarity measure for subsequence matching. We 
believe that our algorithms will contribute to the 
development of many different intelligent applica-
tions.
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