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Speaking Rhythm Extraction and 
Control by Non-negative Temporal 
Decomposition

1.   Introduction

Speech communication using non-native languages 
is difficult for many people both in speaking and lis-
tening to speech. By way of example, most native 
Japanese speakers have difficulty understanding what 
native English speakers are saying and therefore can-
not communicate well in English with them. There 
are two major differences between Japanese and Eng-
lish: pronunciation (e.g., the number of vowels and 
the /R-L/ contrast) and rhythm. Pronunciation is very 
important for communication in English using words 
and short sentences (e.g., “Coffee, please.” and 
“Where is the toilet?”). For long sentences, on the 
other hand, rhythm is more important than pronuncia-
tion. However, most Japanese learners of English 
regard pronunciation as important, rather than 
rhythm. As a result, native Japanese speakers have 
trouble communicating in English using long sen-
tences with native English speakers.

In this article, I introduce a novel method of auto-
matically correcting the halting English rhythm of 
native Japanese speakers by approximating the natu-
ral rhythm of native English speakers (Fig. 1).

2.   Speaking rhythm

Rhythm generally refers to a pattern in time. In 
linguistics, languages can be categorized into two 

rhythms: stress-timed rhythm (e.g., English) and syl-
lable-timed rhythm (e.g., Japanese). Chen et al. 
explained this as follows: “Stress-timed rhythm is 
determined by stressed syllables, which occur at 
regular intervals of time, with an uneven and chang-
ing number of unstressed syllables between them. 
Syllable-timed rhythm is based on the total number of 
syllables since each syllable takes approximately the 
same amount of time,” [1] (Fig. 2). A syllable-timed 
rhythm is thus simpler than a stress-timed rhythm.

Humans follow a rhythm in various situations: 
speaking, playing musical instruments, clapping 
hands, walking, etc. Therefore, the definition of 
rhythm is not limited to only the temporal structure of 
sounds. In this study, I define speaking rhythm as a 
temporal pattern of movements made by articulatory 
organs such as the lips, jaw, tongue, and velum (soft 
palate); that is, not as sounds, but as articulatory 
movements. Some readers might question whether 
the definition of rhythm should be used for articula-
tory movements since most articulatory organs are 
inside the mouth, where speech is produced. Howev-
er, I measured articulatory movements using an elec-
tromagnetic articulography (EMA) system and mag-
netic resonance imaging (MRI) [2] (Fig. 3) and esti-
mated articulatory movements from speech signals 
[3]. My previous study indicated that articulatory move-
ments are suitable for defining speaking rhythm [4]. 
Specifically, I analyzed the articulatory parameters 
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Fig. 1.   Example of speaking rhythm conversion.

???

I see.

Speaking rhythm conversionSpeaking rhythm conversion

Fig. 2.   Examples of stress-timed rhythm and syllable-timed rhythm.

/ho-N-ji-tsu-wa-se-i-te-N-na-ri/
(Meaning “It is fine today” in English.)

(a) Stress-timed rhythm

(b) Syllable-timed rhythm

Humpty Dumpty sat on a wall.

ほんじつはせいてんなり

(stress in red)

Even intervals

(Same length)

Fig. 3.   Methods use to measure articulatory movements.

(a) Electromagnetic articulography system (b) Magnetic resonance imaging*

* In collaboration with Konan University, Hyogo, Japan.
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represented by the vertical and horizontal positions of 
six receiver coils, which were placed on the lower 
incisor, the upper and lower lips, and the tongue 
(three positions), which were measured by the EMA 
system during speech production. The results revealed 
that articulatory parameters can be represented by 
articulatory positions at the central point of each pho-
neme and by linear interpolation. That is, a sparse 
representation of articulatory movements is suitable 
for obtaining speaking rhythm. This finding is related 
to articulatory phonology [5] and recent findings on 
the neural mechanism of speech production [6]. Also, 
this indicates that articulatory parameters change 
smoothly.

Consequently, treating articulatory movements as 
speaking rhythm should make it possible to easily 
extract and control speaking rhythm.

3.   Non-negative temporal decomposition

Speech signals contain both frequency and tempo-
ral information. In audio signal processing, non-neg-
ative matrix factorization (NMF) can be applied to 
decompose audio signals into frequency and tempo-
ral information [7]. However, the NMF algorithm 
does not introduce articulatory-specific restrictions. 
Thus, it is not guaranteed that the temporal informa-
tion will have a bell-shaped velocity profile, which is 
characteristic of human articulatory movements, and 
that only phonemes adjacent to the temporal informa-
tion will affect it.

To overcome this problem, I developed a non-nega-

tive temporal decomposition (NTD) method to 
extract the speaking rhythm (temporal information) 
from speech signals under articulatory-specific 
restrictions.

NTD decomposes a vocal-tract spectrum (e.g., a 
line spectral pair), which is associated with articula-
tory organs, into a set of temporally overlapped pho-
neme-dependent event functions F and corresponding 
event vectors A under articulatory-specific restric-
tions (Fig. 4). Temporal information F introduces the 
phoneme-specific model and is affected only by adja-
cent phonemes. The NTD algorithm is as follows. 
First, a vocal-tract spectrum is calculated from speech 
signals. Then, an event function, which is restricted to 
the range [0,1], is determined by minimizing the 
squared Euclidean distance between the input and the 
estimated vocal-tract spectrum based on the multipli-
cative update rules in the NMF algorithm. Multiplica-
tive update rules make it possible to obtain non-nega-
tive values of event functions and unimodal event 
functions without any penalty functions [4]. In fact, 
the multiplicative update rules would be more effec-
tive for improving the bell-shaped velocity profiles 
than a smoothing method with a penalty function 
introduced to NMF.

In NTD, the event timings need to be known. In this 
study, the timings were modified by minimizing the 
squared Euclidean distance by utilizing dynamic pro-
gramming (DP). Thus, NTD can be considered a 
constrained NMF with DP. The only input for NTD is 
speech signals, but NTD can extract the speaking 
rhythm of articulatory movements due to the 

Fig. 4.   Non-negative temporal decomposition.
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articulatory-specific restrictions. Therefore, NTD is 
expected to be useful for acoustic-to-articulatory 
inversion [4].

4.   Control of speaking rhythm

In this section, I explain how the speaking rhythm 
of an English sentence spoken by a native Japanese 
speaker is converted into the rhythm of a native Eng-
lish speaker (Fig. 5). First, both native Japanese and 
native English speakers read the same English sen-
tence (e.g., “Rice is often served in round bowls”.) 
Next, NTD is applied to extract frequency informa-
tion AJ and temporal information FJ from the vocal-
tract spectrum of the native Japanese speaker and to 
extract AE and FE from that of the native English 
speaker. I substitute FE for FJ to obtain a vocal-tract 
spectrum with the pronunciation of native Japanese 
speaker AJ and the rhythm of native English speaker 
FE. Finally, speech signals are generated from the 
vocal-tract spectrum and source signals. The gener-
ated speech signal in Fig. 5 appears to be time-com-
pressed speech, in which the temporal characteristics 
of the speech signal are altered by reducing its dura-
tion without affecting the frequency characteristics. 
However, the temporal pattern in “bowls” (red square 
in Fig. 5) differs between the Japanese and English 
native speakers; the duration of “ow” for the English 
speaker is much longer than that for the Japanese 
speaker. This indicates that the technique is effective 
for controlling the English speaking rhythm of the 
native Japanese speaker. Feedback from native Eng-

lish speakers indicated that this speaking-rhythm-
controlled speech signal using a personal computer 
was easier to understand.

5.   Future prospects

Speech translation systems using another person’s 
voice can also assist native Japanese speakers when 
they are communicating verbally in English. How-
ever, the opportunities for speech communication in 
English using one’s own voice rather than another 
person’s voice are expected to increase owing to the 
fact that English has been a required subject in ele-
mentary schools since 2011 in Japan.

This technique will be useful in practical applica-
tions such as communicating in English via telecon-
ferences, public speaking, and using mobile phones. 
However, the technique cannot change the speaking 
rhythm of a sentence unless there is already a sample 
of the same sentence that has been read before. Thus, 
to become widely used, it will be necessary to model 
event functions between languages. I hope that this 
technique will eventually alleviate the burden 
involved in communication using non-native lan-
guages.

Fig. 5.   Speaking rhythm conversion method.
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