
� NTT Technical Review

1. Introduction

Parsing, or syntactic analysis, is a fundamental
problem in the field of natural language processing
(NLP). The resulting analyses are useful for develop-
ing high-quality NLP applications such as machine
translation, automatic summarization, and informa-
tion extraction. Consider the English-Japanese trans-
lation as an example. English follows the S-V-O word
order; that is, the subject comes first, the verb second,
and the object third. By contrast, Japanese follows the
S-O-V word order. Thus, when translating from one
language to another, syntactic information such as
subject, verb, and object is necessary for correct word
reordering.

It is known that the syntactic information of a sen-
tence can be encoded in tree-structured forms such as
phrase structure trees and dependency structure trees.
Many human-annotated corpora of syntax trees such
as Penn Treebank [1] have been developed. An exam-
ple of a syntax tree is shown in Fig. 1. The tree con-
tains the syntactic categories PRP, NP, VBP, VP, and
S, which respectively indicate pronoun, noun phrase,
verb, verb phrase, and sentence. A natural language
parser begins with words of input, for example, She
loves me, and builds up the syntactic tree as shown in
Fig. 1, applying grammar rules such as S → NP, VP
and VP → VBP, NP.

Statistical parsing essentially involves three steps:

modeling, learning, and decoding. An illustration of
these steps used in building a statistical parser is
shown in Fig. 2. Modeling syntax trees is formalized
as a probabilistic grammar. Probabilistic grammars
consist of a set of structural rules (tree fragments) that
govern the composition of sentences, clauses, phras-
es, and words. Each rule, called an elementary tree, is
assigned a probability.

With a probabilistic grammar and a collection of
syntax trees, the learning process finds the optimal
parameters that fit the training data based on some
criteria such as maximum-likelihood estimation. For
decoding, the statistical parser searches over a space
of all candidate syntactic analyses according to the
grammar rules. It then computes each candidate’s
probability and determines the most probable parse

Regular Articles

Statistical Grammar Induction for
Natural Language Parsing
Hiroyuki Shindo

Abstract
Parsing, or syntactic analysis, is a fundamental problem in natural language processing. A natural

language parser begins with words of input and builds up a syntactic tree, applying grammar rules
acquired from language corpora beforehand. This article focuses primarily on the acquisition of grammar
rules from language corpora, which is called grammar induction, and describes recent advances in
statistical grammar induction for statistical parsing.

Keywords: natural language processing, parsing, grammar induction

S

VPNP

She

PRP VBP

loves

NP

PRP

me

Fig. 1. Example of syntax tree.

Regular Articles

Vol. 12 No. 1 Jan. 2014 �

tree.
Some well-known probabilistic grammars for mod-

eling syntax trees, which underlie the state-of-the-art
statistical parsers, are reviewed in this article. Addi-
tionally, grammar induction algorithms for learning
grammar rules based on the probabilistic grammars
are introduced.

2. Probabilistic grammars

This section briefly reviews probabilistic tree sub-
stitution grammars (TSGs) and probabilistic symbol-
refined tree substitution grammars (SR-TSGs) for
statistical modeling of syntax trees.

2.1 TSGs
Formally, a TSG is defined by a 4-tuple: G = (T, N,

S, R) where
-	 N is a finite set of nonterminal symbols,
-	 T is a finite set of terminal symbols,
-	 S ∈ N is the distinguished start symbol, and
-	 R is a finite set of productions (a.k.a. (also known

as) rules).
The productions take the form of elementary trees,

that is, tree fragments of height ≥ 1. The root and
internal nodes of the elementary trees are labeled
with nonterminal symbols, and leaf nodes are labeled
with either terminal or nonterminal symbols. Nonter-
minal leaves are referred to as frontier nonterminals

and form the substitution sites to be combined with
other elementary trees.

A derivation is a process of forming a parse tree. It
starts with a root symbol and rewrites (substitutes)
nonterminal symbols with elementary trees until
there are no remaining frontier nonterminals. An
example of TSG derivation is shown in Fig. 3. Differ-
ent derivations may produce the same parse tree.
Therefore, recent studies on TSG induction [2], [3]
have employed a probabilistic model of TSG and
have predicted derivations from observed parse trees
in an unsupervised way.

A probabilistic TSG assigns a probability to each
rule in the grammar. The probability of a derivation is

Resources

Parserthe blue sky

NP

DT

the

NP

JJ

blue

N

sky

Decoding

Learning
S

N

I

VP

V

want

NP

a car

S

N VP

VP

V

want

NP

N

I

Grammar rules

Modeling

DT: determiner Pr: probability
JJ: adjective

Pr (trees Θ)

Pr: 0.01 Pr: 0.03 Pr: 0.005

Fig. 2. Illustration of modeling, learning, and decoding for natural language parsing.

S

VPNP

VBP

loves

NP

NP

She

PRP
NP

me

PRP

Fig. 3. Example of TSG derivation.

Regular Articles

� NTT Technical Review

simply defined as the product of the probabilities of
its component elementary trees as follows:

 p({e}) = p(e|X)
X→e∈{e}

where {e} = (e1, e2, …) is a sequence of elementary
trees used for the derivation, X = root(e) is the root
symbol of e, and p(e|X) is the probability of generat-
ing e given its root symbol X. It should be noted that
probabilistic TSG assumes a sort of context-free
grammars, which means that e is generated condi-
tionally independent of all others given X. Since the
derivation of a syntax tree is usually unobserved, our
grammar induction task turns out to be inferring the
most probable TSG derivation for each syntax tree in
an unsupervised fashion. The extracted TSG rules
and their probabilities are used to parse raw sentences.

2.2 SR-TSGs
The symbol-refined tree substitution grammar (SR-

TSG) proposed previously [4] is an extension of the
TSG model where every symbol of the elementary
trees can be refined (subcategorized) to fit the train-
ing data. An example of SR-TSG derivation is shown
in Fig. 4. In the figure, syntactic categories such as
S-1 and NP-0 are refined in order to model syntax
trees more accurately. For example, grammar rules
are likely to generate pronouns such as I and you as
subject noun phrases, while generating other objects
such as pen and box as object noun phrases. We
expect symbol refinement to automatically cluster
subject noun phrases as NP-0 and object noun phrases
as NP-1. For SR-TSG, it is necessary to infer both
TSG derivation and symbol subcategories of every
node from a training corpus of syntax trees. In the
standard TSG, the extracted SR-TSG rules and their
probabilities are used to parse raw sentences.

One major issue regarding modeling an SR-TSG is
that the space of the grammar rules will be very
sparse since SR-TSG allows for arbitrarily large tree
fragments and also an arbitrarily large set of symbol
subcategories. The authors of the previous study [4]
addressed this data sparseness problem by employing
a three-level hierarchy to encode a backoff scheme
from a set of complex SR-TSG rules to a set of sim-
pler grammar rules. An illustration of a three-level
hierarchy for the SR-TSG model is shown in Fig. 5.
In the figure, the first level allows every SR-TSG rule.
However, the second level only allows tree fragments
of height = 1, and the third level only allows tree frag-

ments of height = 1 and unrefined child nodes. To
address the data sparseness problem, the probability
of the SR-TSG rule (the first level) is interpolated by
the probability of simpler tree fragments (second and
third levels).

Specifically, the probability distribution of SR-TSG
is defined as follows:

p(ei|{e}−i, X, dX, θX) = αei,X + βX × P0(ei|X)

αei,X = andwhere
nei,X − dX·tei,X

θX + ∑enei,X
βei,X =

θX + dX·∑ete,X

θX + ∑enei,X

.

{e}−i = e1, e2, … ei−1 are

previously generated trees, and nei,X is the number of

times ei has been generated in {e}−i. Here, tei,X is the

value of an internal variable called table, P0 is called
a base distribution over e, and dX and θX are param-
eters of the model. This probability model is based on
the Pitman-Yor process [5]. (See [4] for details.)

Roughly speaking, the first term αei‚X is the proba-

bility of e based on the number of times the tree frag-
ment has been generated so far. The second term βX ×
P0 is the smoothing probability of e, which is com-
puted using the simpler grammar rules as shown in
Fig. 5. Even if some grammar rule e does not appear

in the training corpus, that is, αei,X = 0 the probability

of e becomes higher than zero due to the smoothing
probability β × P0(e|X).

S-1

VP-2NP-0

VBP-0

loves

NP-1

NP-0

She

PRP-1
NP-1

me

PRP-3

Fig. 4. Example of SR-TSG derivation.

Regular Articles

Vol. 12 No. 1 Jan. 2014 �

3. Inference

Once we define the probabilistic grammar model
such as TSG or SR-TSG, we can infer the most prob-
able grammar rules (derivation) from a training cor-
pus of syntax trees. For the inference of grammar
rules, Gibbs sampling [6] is one of the most common
techniques applied to obtain derivation samples from
the posterior distribution.

The basic procedure of Gibbs sampling for infer-
ring TSG rules is explained here as an example. The
inference of TSG derivation corresponds to inducing
substitution nodes. A substitution node is a node of a
parse tree that forms the root node of some elemen-
tary tree. For example, in Fig. 3, two NP nodes are
substitution nodes, while all the other nodes are non-
substitution nodes.

An illustration of Gibbs sampling for TSG induc-
tion is shown in Fig. 6. For each iteration, the Gibbs
sampling algorithm works by sampling the value of
each binary variable (1 for substitution node and 0 for
non-substitution node) according to the posterior dis-

tribution in random order. When it reaches conver-
gence, we can obtain the most probable derivation
according to the posterior distribution over grammar
rules. For the inference of the SR-TSG model, it is
necessary to induce substitution nodes plus latent
subcategories for every node.

4. Experiment

4.1 Setting
Some experimental results of statistical parsing

using TSG and SR-TSG are introduced in this sec-
tion. The standard data set for evaluating parsing
performance is the Wall Street Journal (WSJ) portion
of the English Penn Treebank [1]. The Penn Treebank
data set consists of 24 sections; we used sections 2–21
for the training corpus and 23 for testing.

For training, the grammar rules are extracted by
Gibbs sampling from a collection of syntax trees in
the training data. For testing, the algorithm begins
with words of input, rather than a syntax tree, and
then predicts the syntax tree. The parsing results are

S-1 S-1 S-1

VP-2

VP-2 VP-2

NP-0

VBP-0

VBP-0

VBP-0 VBP-0

loves

NP-1

NP-1

Level 1 Level 2

VP-2NP-0

loves

Level 3

VPNP

VBP NP loves

Fig. 5. Three-level hierarchy for SR-TSG model.

S

VPNP

VBP

lovesNP

She

PRP

S

VPNP

PRP
VP

VBP NP

PRP

me

She

PRP

VBP

loves

⇒

S

VPNP

VBP NP

VBP

loves

NP

She

PRP NP

me

PRP

NP

NP

me

PRP

⇒

Iteration 1 Iteration 2 Iteration 3

Fig. 6. Gibbs sampling for TSG induction.

Regular Articles

� NTT Technical Review

obtained with the MAX-RULE-PRODUCT algo-
rithm [7] by using the extracted grammar rules. The
accuracy of the predicted syntax trees is evaluated by
bracketing the parsing accuracy (F1 score) of the
predicted parse trees.

4.2 Results and discussion
The F1 scores of context-free grammar (CFG),

TSG, and SR-TSG models [4] are listed in Table 1.
The parsing accuracy of the SR-TSG model with
three backoff hierarchy settings is also listed in the
Table in order to show the effects of backoff smooth-
ing on parsing accuracy. In Table 1, F1 (small) indi-
cates that we used only section 2 (small training data)
for training, whereas F1 (full) indicates that we used
sections 2–21 (full training data) for training. More-
over, SR-TSG (level 1) denotes that we used only the
topmost level of the hierarchy. Similarly, SR-TSG
(level 1 + 2) denotes that we used only levels 1 and 2
for backoff smoothing.

The results obtained in the previous study [4] indi-
cate that the best model, SR-TSG (level 1 + 2 + 3),
performed the best on both training sets. This sug-
gests that the conventional CFG and TSG models
trained naively from the treebank are insufficient to
fit the training data due to the context-free assump-
tion and coarse symbol annotations. SR-TSG also
assumes context-freeness; however, as we expected,
symbol refinement can be helpful with the TSG
model for further fitting of the training data and for
improving the parsing accuracy.

The performance of the SR-TSG parser was strong-
ly affected by its backoff models. SR-TSG (level 1)
performed poorly compared with the best model.
This result suggests that the SR-TSG rules extracted
from the training set are very sparse and cannot cover
the space of unknown syntax patterns in the testing
set. Therefore, well-designed backoff modeling is

essential for the SR-TSG parser.

5. Summary

This article reported on recent progress in statistical
grammar induction for natural language parsing and
presented probabilistic TSG and SR-TSG for model-
ing syntax trees and a Gibbs sampling algorithm for
extracting grammar rules. SR-TSG successfully out-
performed the TSG model in a standard English pars-
ing task by using a symbol refinement technique and
three-level backoff smoothing.

References

[1]	 M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn Treebank,” Journal of
Computational Linguistics, Vol. 19, No. 2, pp. 313–330, 1993.

[2]	 M. Post and D. Gildea, “Bayesian learning of a tree substitution gram-
mar,” Proc. of the ACL-IJCNLP 2009 Conference Short Papers, pp.
45–48, Suntec, Singapore.

[3]	 T. Cohn, S. Goldwater, and P. Blunsom, “Inducing compact but accu-
rate tree-substitution grammars,” Proc. of Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics (NAACL ’09),
pp. 548–556.

[4]	 H. Shindo, Y. Miyao, A. Fujino, and M. Nagata, “Bayesian symbol-
refined tree substitution grammars for syntactic parsing,” Proc. of the
50th Annual Meeting of the Association for Computational Linguis-
tics, pp. 440–448, Jeju, Republic of Korea, 2012.

[5]	 J. Pitman and M. Yor, “The two-parameter Poisson-Dirichlet distribu-
tion derived from a stable subordinator,” The Annals of Probability,
Vol. 25, No. 2, pp. 855–900, 1997.

[6]	 S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. PAMI-6, No. 6, pp. 721–741,
1984.

[7]	 S. Petrov, L. Barrett, R. Thibaux, and D. Klein, “Learning accurate,
compact, and interpretable tree annotation,” Proc. of the 21st Interna-
tional Conference on Computational Linguistics and the 44th Annual
Meeting of the Association for Computational Linguistics (ICCL-
ACL), pp. 433–440, Australia, 2006.

Model F1 (small)
CFG 61.9
TSG 77.1
SR-TSG (level 1) 73.0
SR-TSG (levels 1 + 2) 79.4
SR-TSG (levels 1 + 2 + 3) 81.7

 F1 (full)
63.6
85.0
86.4
89.7
91.1

Table. 1. Comparison of parsing accuracy.

Hiroyuki Shindo
Researcher, NTT Communication Science

Laboratories.
He received the B.S. and M.S. degrees from

Waseda University, Tokyo, in 2007 and 2009,
respectively, and the Ph.D. degree in engineering
from Nara Institute of Science and Technology in
2013. Since 2009, he has been engaged in
research on natural language processing at NTT
Communication Science Laboratories. He
received the Best Paper Award from the annual
meeting of the Association for Computational
Linguistics (ACL) in 2012. He is a member of
ACL and the Information Processing Society of
Japan.

