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1.   Introduction

Parsing, or syntactic analysis, is a fundamental 
problem in the field of natural language processing 
(NLP). The resulting analyses are useful for develop-
ing high-quality NLP applications such as machine 
translation, automatic summarization, and informa-
tion extraction. Consider the English-Japanese trans-
lation as an example. English follows the S-V-O word 
order; that is, the subject comes first, the verb second, 
and the object third. By contrast, Japanese follows the 
S-O-V word order. Thus, when translating from one 
language to another, syntactic information such as 
subject, verb, and object is necessary for correct word 
reordering.

It is known that the syntactic information of a sen-
tence can be encoded in tree-structured forms such as 
phrase structure trees and dependency structure trees. 
Many human-annotated corpora of syntax trees such 
as Penn Treebank [�] have been developed. An exam-
ple of a syntax tree is shown in Fig. 1. The tree con-
tains the syntactic categories PRP, NP, VBP, VP, and 
S, which respectively indicate pronoun, noun phrase, 
verb, verb phrase, and sentence. A natural language 
parser begins with words of input, for example, She 
loves me, and builds up the syntactic tree as shown in 
Fig. �, applying grammar rules such as S → NP, VP 
and VP → VBP, NP.

Statistical parsing essentially involves three steps: 

modeling, learning, and decoding. An illustration of 
these steps used in building a statistical parser is 
shown in Fig. 2. Modeling syntax trees is formalized 
as a probabilistic grammar. Probabilistic grammars 
consist of a set of structural rules (tree fragments) that 
govern the composition of sentences, clauses, phras-
es, and words. Each rule, called an elementary tree, is 
assigned a probability.

With a probabilistic grammar and a collection of 
syntax trees, the learning process finds the optimal 
parameters that fit the training data based on some 
criteria such as maximum-likelihood estimation. For 
decoding, the statistical parser searches over a space 
of all candidate syntactic analyses according to the 
grammar rules. It then computes each candidate’s 
probability and determines the most probable parse 
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tree.
Some well-known probabilistic grammars for mod-

eling syntax trees, which underlie the state-of-the-art 
statistical parsers, are reviewed in this article. Addi-
tionally, grammar induction algorithms for learning 
grammar rules based on the probabilistic grammars 
are introduced.

2.   Probabilistic grammars

This section briefly reviews probabilistic tree sub-
stitution grammars (TSGs) and probabilistic symbol-
refined tree substitution grammars (SR-TSGs) for 
statistical modeling of syntax trees.

2.1   TSGs
Formally, a TSG is defined by a 4-tuple: G = (T, N, 

S, R) where
- N is a finite set of nonterminal symbols,
- T is a finite set of terminal symbols,
- S ∈ N is the distinguished start symbol, and
- R is a finite set of productions (a.k.a. (also known 

as) rules).
The productions take the form of elementary trees, 

that is, tree fragments of height ≥ �. The root and 
internal nodes of the elementary trees are labeled 
with nonterminal symbols, and leaf nodes are labeled 
with either terminal or nonterminal symbols. Nonter-
minal leaves are referred to as frontier nonterminals 

and form the substitution sites to be combined with 
other elementary trees.

A derivation is a process of forming a parse tree. It 
starts with a root symbol and rewrites (substitutes) 
nonterminal symbols with elementary trees until 
there are no remaining frontier nonterminals. An 
example of TSG derivation is shown in Fig. 3. Differ-
ent derivations may produce the same parse tree. 
Therefore, recent studies on TSG induction [�], [3] 
have employed a probabilistic model of TSG and 
have predicted derivations from observed parse trees 
in an unsupervised way.

A probabilistic TSG assigns a probability to each 
rule in the grammar. The probability of a derivation is 
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Fig. 2.   Illustration of modeling, learning, and decoding for natural language parsing.
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simply defined as the product of the probabilities of 
its component elementary trees as follows:

 p({e}) =  p(e|X)
X→e∈{e}

where {e} = (e�, e�, …) is a sequence of elementary 
trees used for the derivation, X = root(e) is the root 
symbol of e, and p(e|X) is the probability of generat-
ing e given its root symbol X. It should be noted that 
probabilistic TSG assumes a sort of context-free 
grammars, which means that e is generated condi-
tionally independent of all others given X. Since the 
derivation of a syntax tree is usually unobserved, our 
grammar induction task turns out to be inferring the 
most probable TSG derivation for each syntax tree in 
an unsupervised fashion. The extracted TSG rules 
and their probabilities are used to parse raw sentences.

2.2   SR-TSGs
The symbol-refined tree substitution grammar (SR-

TSG) proposed previously [4] is an extension of the 
TSG model where every symbol of the elementary 
trees can be refined (subcategorized) to fit the train-
ing data. An example of SR-TSG derivation is shown 
in Fig. 4. In the figure, syntactic categories such as 
S-� and NP-0 are refined in order to model syntax 
trees more accurately. For example, grammar rules 
are likely to generate pronouns such as I and you as 
subject noun phrases, while generating other objects 
such as pen and box as object noun phrases. We 
expect symbol refinement to automatically cluster 
subject noun phrases as NP-0 and object noun phrases 
as NP-�. For SR-TSG, it is necessary to infer both 
TSG derivation and symbol subcategories of every 
node from a training corpus of syntax trees. In the 
standard TSG, the extracted SR-TSG rules and their 
probabilities are used to parse raw sentences.

One major issue regarding modeling an SR-TSG is 
that the space of the grammar rules will be very 
sparse since SR-TSG allows for arbitrarily large tree 
fragments and also an arbitrarily large set of symbol 
subcategories. The authors of the previous study [4] 
addressed this data sparseness problem by employing 
a three-level hierarchy to encode a backoff scheme 
from a set of complex SR-TSG rules to a set of sim-
pler grammar rules. An illustration of a three-level 
hierarchy for the SR-TSG model is shown in Fig. 5. 
In the figure, the first level allows every SR-TSG rule. 
However, the second level only allows tree fragments 
of height = �, and the third level only allows tree frag-

ments of height = � and unrefined child nodes. To 
address the data sparseness problem, the probability 
of the SR-TSG rule (the first level) is interpolated by 
the probability of simpler tree fragments (second and 
third levels).

Specifically, the probability distribution of SR-TSG 
is defined as follows:

p(ei|{e}−i, X, dX, θX) = αei,X + βX × P0(ei|X)

αei,X = andwhere
nei,X − dX·tei,X

θX + ∑enei,X
βei,X =

θX + dX·∑ete,X

θX + ∑enei,X

.

{e}−i = e�, e�, … ei−� are

previously generated trees, and nei,X is the number of 

times ei has been generated in {e}−i. Here, tei,X is the 

value of an internal variable called table, P0 is called 
a base distribution over e, and dX and θX are param-
eters of the model. This probability model is based on 
the Pitman-Yor process [5]. (See [4] for details.)

Roughly speaking, the first term αei‚X is the proba-

bility of e based on the number of times the tree frag-
ment has been generated so far. The second term βX × 
P0 is the smoothing probability of e, which is com-
puted using the simpler grammar rules as shown in 
Fig. 5. Even if some grammar rule e does not appear 

in the training corpus, that is, αei,X = 0 the probability 

of e becomes higher than zero due to the smoothing 
probability β × P0(e|X).
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Fig. 4.   Example of SR-TSG derivation.
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3.   Inference

Once we define the probabilistic grammar model 
such as TSG or SR-TSG, we can infer the most prob-
able grammar rules (derivation) from a training cor-
pus of syntax trees. For the inference of grammar 
rules, Gibbs sampling [6] is one of the most common 
techniques applied to obtain derivation samples from 
the posterior distribution.

The basic procedure of Gibbs sampling for infer-
ring TSG rules is explained here as an example. The 
inference of TSG derivation corresponds to inducing 
substitution nodes. A substitution node is a node of a 
parse tree that forms the root node of some elemen-
tary tree. For example, in Fig. 3, two NP nodes are 
substitution nodes, while all the other nodes are non-
substitution nodes.

An illustration of Gibbs sampling for TSG induc-
tion is shown in Fig. 6. For each iteration, the Gibbs 
sampling algorithm works by sampling the value of 
each binary variable (� for substitution node and 0 for 
non-substitution node) according to the posterior dis-

tribution in random order. When it reaches conver-
gence, we can obtain the most probable derivation 
according to the posterior distribution over grammar 
rules. For the inference of the SR-TSG model, it is 
necessary to induce substitution nodes plus latent 
subcategories for every node.

4.   Experiment

4.1   Setting
Some experimental results of statistical parsing 

using TSG and SR-TSG are introduced in this sec-
tion. The standard data set for evaluating parsing 
performance is the Wall Street Journal (WSJ) portion 
of the English Penn Treebank [�]. The Penn Treebank 
data set consists of �4 sections; we used sections �–�� 
for the training corpus and �3 for testing.

For training, the grammar rules are extracted by 
Gibbs sampling from a collection of syntax trees in 
the training data. For testing, the algorithm begins 
with words of input, rather than a syntax tree, and 
then predicts the syntax tree. The parsing results are 
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Fig. 5.   Three-level hierarchy for SR-TSG model.

S

VPNP

VBP

lovesNP

She

PRP

S

VPNP

PRP
VP

VBP NP

PRP

me

She

PRP

VBP

loves

⇒

S

VPNP

VBP NP

VBP

loves

NP

She

PRP NP

me

PRP

NP

NP

me

PRP

⇒

Iteration 1 Iteration 2 Iteration 3

Fig. 6.   Gibbs sampling for TSG induction.



Regular Articles

5 NTT Technical Review

obtained with the MAX-RULE-PRODUCT algo-
rithm [7] by using the extracted grammar rules. The 
accuracy of the predicted syntax trees is evaluated by 
bracketing the parsing accuracy (F� score) of the 
predicted parse trees.

4.2   Results and discussion
The F� scores of context-free grammar (CFG), 

TSG, and SR-TSG models [4] are listed in Table 1. 
The parsing accuracy of the SR-TSG model with 
three backoff hierarchy settings is also listed in the 
Table in order to show the effects of backoff smooth-
ing on parsing accuracy. In Table �, F� (small) indi-
cates that we used only section � (small training data) 
for training, whereas F� (full) indicates that we used 
sections �–�� (full training data) for training. More-
over, SR-TSG (level �) denotes that we used only the 
topmost level of the hierarchy. Similarly, SR-TSG 
(level � + �) denotes that we used only levels � and � 
for backoff smoothing.

The results obtained in the previous study [4] indi-
cate that the best model, SR-TSG (level � + � + 3), 
performed the best on both training sets. This sug-
gests that the conventional CFG and TSG models 
trained naively from the treebank are insufficient to 
fit the training data due to the context-free assump-
tion and coarse symbol annotations. SR-TSG also 
assumes context-freeness; however, as we expected, 
symbol refinement can be helpful with the TSG 
model for further fitting of the training data and for 
improving the parsing accuracy.

The performance of the SR-TSG parser was strong-
ly affected by its backoff models. SR-TSG (level �) 
performed poorly compared with the best model. 
This result suggests that the SR-TSG rules extracted 
from the training set are very sparse and cannot cover 
the space of unknown syntax patterns in the testing 
set. Therefore, well-designed backoff modeling is 

essential for the SR-TSG parser.

5.   Summary

This article reported on recent progress in statistical 
grammar induction for natural language parsing and 
presented probabilistic TSG and SR-TSG for model-
ing syntax trees and a Gibbs sampling algorithm for 
extracting grammar rules. SR-TSG successfully out-
performed the TSG model in a standard English pars-
ing task by using a symbol refinement technique and 
three-level backoff smoothing.

References

[�] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a 
large annotated corpus of English: The Penn Treebank,” Journal of 
Computational Linguistics, Vol. �9, No. �, pp. 3�3–330, �993.

[�] M. Post and D. Gildea, “Bayesian learning of a tree substitution gram-
mar,” Proc. of the ACL-IJCNLP �009 Conference Short Papers, pp. 
45–48, Suntec, Singapore.

[3] T. Cohn, S. Goldwater, and P. Blunsom, “Inducing compact but accu-
rate tree-substitution grammars,” Proc. of Human Language Tech-
nologies: The �009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics (NAACL ’09), 
pp. 548–556.

[4] H. Shindo, Y. Miyao, A. Fujino, and M. Nagata, “Bayesian symbol-
refined tree substitution grammars for syntactic parsing,” Proc. of the 
50th Annual Meeting of the Association for Computational Linguis-
tics, pp. 440–448, Jeju, Republic of Korea, �0��.

[5] J. Pitman and M. Yor, “The two-parameter Poisson-Dirichlet distribu-
tion derived from a stable subordinator,” The Annals of Probability, 
Vol. �5, No. �, pp. 855–900, �997.

[6] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, 
and the Bayesian restoration of images,” IEEE Trans. on Pattern 
Analysis and Machine Intelligence, Vol. PAMI-6, No. 6, pp. 7��–74�, 
�984.

[7] S. Petrov, L. Barrett, R. Thibaux, and D. Klein, “Learning accurate, 
compact, and interpretable tree annotation,” Proc. of the ��st Interna-
tional Conference on Computational Linguistics and the 44th Annual 
Meeting of the Association for Computational Linguistics (ICCL-
ACL), pp. 433–440, Australia, �006.

Model  F1 (small)
CFG 61.9
TSG 77.1
SR-TSG (level 1) 73.0
SR-TSG (levels 1 + 2) 79.4
SR-TSG (levels 1 + 2 + 3) 81.7

 F1 (full)
63.6
85.0
86.4
89.7
91.1

Table. 1.   Comparison of parsing accuracy.
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