
� NTT Technical Review

1. Introduction

Part of our technical support related to Java*1 at the
NTT Open Source Software (OSS) Center involves
handling fault analysis requests from customers.
However, for some of these requests, we cannot
obtain enough data when the fault occurs to immedi-
ately investigate or analyze it. In such cases, we ask
the client to recapture the data, although sometimes,
such as when the fault occurs infrequently, it can take
a very long time to reproduce the fault and obtain the
data. In conventional analysis, data such as a heap
dump*2 are retrieved. However, this can also place a
heavy load on the system, and the output files can be
very large, so it is often difficult to obtain a heap
dump from an operational system. When it cannot be
obtained, a text file called a class histogram must be
obtained instead. In such cases, even more manual
work is required for analysis, and the information that
can be obtained is limited (Fig. 1(a)).

For these reasons, at the NTT OSS Center, we have
developed a Java Virtual Machine (JVM) monitoring
and analysis tool called HeapStats, with the main
goal of enabling rapid analysis when a problem in a

Java application occurs that causes a fault such as
insufficient heap memory.

HeapStats operates with low overhead, so it has
minimal effect on the performance of the Java appli-
cation. Moreover, it can continuously obtain detailed
information on the internal heap memory state such
as heap memory usage by class and reference rela-
tionships among classes, and it can analyze faults and
display the results graphically. These capabilities
enable it to continuously obtain sufficient informa-
tion to analyze faults and immediately respond when
problems occur suddenly, even on an operational sys-
tem (Fig. 1(b)).

We have published HeapStats as open source soft-
ware (OSS) in a community called IcedTea. Our goal
is to have it used in many projects, obtain feedback
from users, and make further improvements [1].
IcedTea is a development community for the Open-
JDK package used by many Linux distributors, with

HeapStats: Your Dependable Helper
for Java Applications, from
Development to Operation
Shinji Takao, Yasumasa Suenaga, Yuji Kubota,
Hiroaki Waki, and Masahiro Nagafusa

Abstract
HeapStats is an open source software monitoring and analysis tool developed by the NTT Open Source

Software Center. HeapStats enables people to monitor detailed runtime information about the heap
memory (an area of memory) managed by the Java Virtual Machine with minimal effect on the perfor-
mance of the Java application. HeapStats helps to resolve problems rapidly when debugging during
development, testing, and operation. This article introduces HeapStats and its strengths, application
scenarios, and examples of analysis using it.

Keywords: Java, fault analysis, system monitoring

Feature Articles: Technologies for Promoting Use of Open
Source Software that Contribute to Reducing TCO of IT Platform

*1	 Java is a registered trademark of Oracle Corporation and/or its
affiliates in the USA and other countries.

*2	 Heap dump: An output file of the contents of heap memory man-
aged by the Java Virtual Machine.

Vol. 12 No. 6 June 2014 �

Feature Articles

participation by many developers and users. Currently,
the HeapStats project on IcedTea is operated mainly
by three committers*3, who are from the NTT OSS
Center.

2. HeapStats overview

HeapStats is composed of two programs: the JVM
monitoring agent (agent) and the analyzer (Fig. 2).
The agent gathers the information needed to analyze
faults. It can be invoked easily by adding a start-up
option when starting a Java process, and it continu-
ously monitors factors such as heap memory usage
and occurrence of deadlocks. It can also alert other
operation monitoring tools using Simple Network
Management Protocol (SNMP) traps, so it can also be
used as a simple monitoring tool. The analyzer is an
application that provides a GUI (graphical user inter-
face) displaying the various kinds of JVM informa-
tion obtained by the agent, and also provides analysis
support.

2.1 Agent
The agent collects information related to heap

memory. It was built conforming to the JVM garbage
collection (GC) implementation as described below

*3	 Committer: A manager of an OSS project with the right to update
the source code repository.

Fig. 1. Fault analysis using HeapStats.

Waiting to reproduce fault &
obtaining various logs

Major reduction

Manual analysis using
various logs and tools Fixing the problem

Fixing the problem

Normal
operation

Normal
operation

Normal
operation

Normal
operation

Information is always being
collected, so fault reproduction

is not necessary.

Major reduction compared
to manual analysis.

Fault
occurs

Fault
occurs

Fault
reproduced

(a) Fault analysis before HeapStats

(b) Fault analysis using HeapStats

Cause identified Repaired

Cause
identified

Analysis using
HeapStats

Log collection Log collection

Repaired

Fig. 2. HeapStats system architecture.

= HeapStats

Java application execution machine

Java application
(including Java application servers)

Agent

Java related data
Object reference data

Other data

Analyzer

Analysis

SNMP trap

Operations
monitoring tool

JVM

Attached to the JVM

� NTT Technical Review

Feature Articles

in order to minimize the overhead for the application
being monitored.

When the GC is recovering heap memory from Java
objects that are no longer in use, it looks for and
marks objects still in use in order to prevent recovery
of memory still in use (Fig. 3). The agent interposes
a process into the function performing this marking
process to obtain a variety of information, so the
agent and the GC marking process operate together.
To eliminate application programming interface
(API) call overhead in doing so, it obtains data by
directly referencing the heap memory data addresses
needed.

The information gathered by the agent is narrowed
down to what is needed for analysis, which keeps the
volume of data small compared to that of a heap
dump. The information obtained for each GC is out-
put to a log (a snapshot file) immediately, so there is
no impact on memory.

The agent uses these techniques to obtain the data
with low overhead. We used SPECjvm2008 [2], a
standard benchmark for measuring the performance
of Java runtime environments, to compare scores
when using and not using HeapStats. It showed that
the overhead was kept to 4.51%*4 (Fig. 4). This
allows information to be collected continuously, even
on an operating system, which is not possible when
using heap dumps.

The agent also gathers a variety of information
regarding aspects other than heap memory, for exam-
ple, server resources. In addition to the information
normally gathered (Fig. 5(a)), the agent gathers even
more information when an out-of-memory error

(OOME) or deadlock occurs in the JVM (Fig. 5(b)).
The agent runs on x86 and x86_64 architectures run-
ning Linux and Java SE6 or greater, and installation
packages are available for Red Hat Enterprise Linux
and others.

2.2 Analyzer
The analyzer displays information related to the

Fig. 3. Applying GC marks.

In-use object

Objects for recovery

JNI: Java Native Interface

Thread stackGC root

Mark

Recovery
(sweep)

JNI reference

Fig. 4. �HeapStats overhead rate (SPECjvm2008
Composite Result).

Overhead rate

Without HeapStats

* Measurement environment
- Benchmark tool: SPECjvm2008 1.01
- Machine: DELL PowerEdge R810 (Xeon X7542, 32 GB memory)
- OS: Red Hat Enterprise Linux Server release 6.3 x86_64
- Java: java-1.7.0-openjdk-1.7.0.25-2.3.10.4.el6_4.x86_64
- Java execution options: -Xms4500m –Xmx4500m –XX:+UseG1GC
 –agentpath: <agent library>

With HeapStats

282.68 269.924.51%

(ops/m)
300

250

200

150

100

50

0

*4	 Differs depending on application and machine environment.

Vol. 12 No. 6 June 2014 �

Feature Articles

snapshot files and server resources collected by the
agent. In particular, the information recorded in snap-
shot files is displayed graphically to aid analysis. A
screen with the time sequence of heap memory usage
information and the per-class number of objects and
heap memory usage are shown in Fig. 6(a). A screen
graphically showing the referential relationships for a
class object (what classes reference an object of a
given class)*5 is indicated in Fig. 6(b). This is often a
large amount of information and can be difficult to
analyze using conventional heap-dump analysis
tools. To simplify the analysis, the analyzer provides

functions to narrow the results by a particular class
name or to sort them by the number of objects or the
heap memory usage per class.

A concrete example of analysis using the analyzer
is described below.

3. HeapStats application scenario

Testing and debugging related to heap memory can

Fig. 5. HeapStats data collection items.

RSS/VSZ: resident set size/virtual memory size
CPU: central processor unit

Java heap
related data

CPU usage

GC

Class name

No. of instances

Total size

Reference
relations

Time

Cause

Processing time

Fault time

Fault type

Thread dump

Various
versions

Java related
data

Process data

GC log

Java
(update versions, etc.)

JVM

Kernel

libc

Distribution

JVM name

Class path

Java home directory

Launch arguments

Launch flags (-XX types)

Heap usage by generation

Perm, Metaspace usage

Class loader data

No. of live threads

No. of monitor (lock)
race conditions

(a) Normal state (b) When OOME/deadlock has occurred

Class
histogram

Java runtime
data

Native memory usage
(RSS/VSZ)

Overall system usage

Time fully stopped
(Stop-the-world)

Java process internal
breakdown (usr/sys)

- When OOME or deadlock occurs, in
 addition to the (a) data, (b) are also
 collected (depending on the environment,
 some may not be collectable).
- (b) data is automatically archived (archive
 format is selectable).
- After archiving is complete, notification
 of the path where it is stored is given using
 an SNMP trap.

syslog (/var/log/messages)

Standard output, standard error output

Socket end-points
(netstat equiv.)

Resource limitations
(procfs limits)

Native memory
(procfs smaps)

Process status
(procfs status)

Execution time (interval till
fault occurred)

Name and arguments for
executing Java program

*5	 A display of class reference relationships is available in Heap-
Stats 1.1.0 or later.

� NTT Technical Review

Feature Articles

be done more efficiently by using HeapStats starting
with the development stage. Java programs entrust
the management of heap memory to the JVM, so they
do not have to explicitly release memory. However, if
a program unintentionally maintains references to
some objects, the JVM cannot release the memory,
and the heap memory usage increases, which can lead
to running out of free space in heap memory (memo-
ry leaks). The heap memory analysis functions of
HeapStats are useful for detecting memory leaks
early.

Normally, memory leaks are discovered during
development testing, but if they progress slowly over
long periods of time or are triggered by a particular
operation, they could manifest during operation as
well. Insufficient heap memory can also occur even

without a memory leak, such as when the amount of
processing exceeds that anticipated during design, or
when processing requiring a large amount of heap
memory occurs. These can be related to the number
of users or an increase in accumulated data, so they
can occur after operating for a certain amount of time.
Thus, even programs with adequate debugging and
testing before release must be monitored for prob-
lems that could arise during operation, so HeapStats
can be effective in the operational stages as well.

A scenario using HeapStats linked to operations
monitoring tools through SNMP is shown in Fig. 7.
Notifications that predict faults related to the detailed
state of heap memory—such as particular classes
consuming large amounts of heap memory—are sent
to related parties, which enables a rapid response

Fig. 6. HeapStats analysis screen.

(a) Display of no. of objects, heap memory use (b) Display of object reference relations

Fig. 7. Operation monitoring tool and how it works.

Rapid
information

sharing

Operation monitoring tool
Gather logs

automatically
when a fault occurs.

Email to related
parties

Application server

SNMP trapHeapStats JVM
monitoring agent

- Detected possible memory leak!
- Fault occurred!

Rapid
analysis
of cause HeapStats

analyzer
Restart

AnalysisGather
logs.

Reduce effect
on service.

Vol. 12 No. 6 June 2014 �

Feature Articles

when such faults occur.

4. Analysis example

We next introduce an example of a defect occurring
during testing at the NTT OSS Center, which we were
able to locate quickly. During testing of a system into
which HeapStats had been installed, Major GC*6
events began occurring frequently, causing perfor-
mance to drop. The heap memory usage stacked area
chart (Fig. 8) showed that the program was consis-
tently using quite a large amount of memory, and
most of it was allocated to byte arrays. Next, we dis-
played the class reference relation diagram (Fig. 9)
and identified that the class for messages exchanged
between application servers for application server

redundancy (clustering) was using a large number of
byte arrays. From that, we focused our investigation
on tuning the settings related to clustering and were
able to quickly identify the cause. If we had not used
HeapStats, it would have been difficult to understand
the reference relations between classes, and we would
not have known why byte arrays were being used.
Consequently, it would probably have taken much
longer to identify the cause.

5. Future development

In the future, we will promote HeapStats as an

Fig. 8. Stacked area chart.

Displays the stacked
heap memory usage
for each class

On mouse-over, the
class name, heap
memory use, and other
data are displayed.

The class referencing the
most byte arrays

On mouse-over of a value,
detailed heap memory use
is displayed.

Fig. 9. Class reference relation graph.

*6	 Major GC: A process in which the JVM performs recovery over
the entire heap memory.

� NTT Technical Review

Feature Articles

effective analysis tool that can be used to solve prob-
lems during development, testing, and operation by
introducing it into projects, and to contribute to
reducing the total cost of operations. We also hope to
add functionality based on user feedback, and to
make further quality and performance improvements.
Moreover, we would like to integrate it with other

OSS analysis tools.

References

[1]	 HeapStats, http://icedtea.classpath.org/wiki/HeapStats
[2]	 Standard Performance Evaluation Corporation,
	 http://www.spec.org/jvm2008/

Hiroaki Waki
Senior Manager, Application Software Tech-

nology Unit, NTT Open Source Software Cen-
ter.

He received the M.E. in information engineer-
ing from Toyohashi University of Technology,
Aichi, in 1991. He joined the NTT Group in
1991.

Masahiro Nagafusa
Leader, Application Software Technology

Unit, NTT Open Source Software Center.
He received the B.L.S. from the University of

Library and Information Science (currently, the
School of Informatics at the University of Tsu-
kuba, Ibaraki), in 1989. He joined the NTT
Group in 1989. He manages the support opera-
tions of more than 15 web/OSS products includ-
ing JBoss.

Shinji Takao
Senior Expert, Application Software Technol-

ogy Unit, NTT Open Source Software Center.
He received the M.M.G. and the Ph.D. in engi-

neering from Keio University, Tokyo, in 1996
and 2008, respectively. He joined the NTT Group
in 1996. He is a committer of IcedTea (Heap-
Stats).

Yasumasa Suenaga
Senior Expert, OSS Promotion Unit, NTT

Open Source Software Center.
He received the B.E. in information and com-

munication engineering from Tokyo Denki Uni-
versity, in 2006. He joined the NTT Group in
2006. He is a committer of IcedTea (HeapStats),
and an author of the JDK9 development com-
munity. In April 2014, he moved to NTT Com-
ware.

Yuji Kubota
Expert, Application Software Technology

Unit, NTT Open Source Software Center.
He received the M.S. in informatics, Kyoto

University in 2009. He joined the NTT Group in
2009. He is a committer of IcedTea (HeapStats).

