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1.   Introduction

Part of our technical support related to Java*1 at the 
NTT Open Source Software (OSS) Center involves 
handling fault analysis requests from customers. 
However, for some of these requests, we cannot 
obtain enough data when the fault occurs to immedi-
ately investigate or analyze it. In such cases, we ask 
the client to recapture the data, although sometimes, 
such as when the fault occurs infrequently, it can take 
a very long time to reproduce the fault and obtain the 
data. In conventional analysis, data such as a heap 
dump*2 are retrieved. However, this can also place a 
heavy load on the system, and the output files can be 
very large, so it is often difficult to obtain a heap 
dump from an operational system. When it cannot be 
obtained, a text file called a class histogram must be 
obtained instead. In such cases, even more manual 
work is required for analysis, and the information that 
can be obtained is limited (Fig. 1(a)).

For these reasons, at the NTT OSS Center, we have 
developed a Java Virtual Machine (JVM) monitoring 
and analysis tool called HeapStats, with the main 
goal of enabling rapid analysis when a problem in a 

Java application occurs that causes a fault such as 
insufficient heap memory. 

HeapStats operates with low overhead, so it has 
minimal effect on the performance of the Java appli-
cation. Moreover, it can continuously obtain detailed 
information on the internal heap memory state such 
as heap memory usage by class and reference rela-
tionships among classes, and it can analyze faults and 
display the results graphically. These capabilities 
enable it to continuously obtain sufficient informa-
tion to analyze faults and immediately respond when 
problems occur suddenly, even on an operational sys-
tem (Fig. 1(b)). 

We have published HeapStats as open source soft-
ware (OSS) in a community called IcedTea. Our goal 
is to have it used in many projects, obtain feedback 
from users, and make further improvements [1]. 
IcedTea is a development community for the Open-
JDK package used by many Linux distributors, with 
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participation by many developers and users. Currently, 
the HeapStats project on IcedTea is operated mainly 
by three committers*3, who are from the NTT OSS 
Center. 

2.   HeapStats overview

HeapStats is composed of two programs: the JVM 
monitoring agent (agent) and the analyzer (Fig. 2). 
The agent gathers the information needed to analyze 
faults. It can be invoked easily by adding a start-up 
option when starting a Java process, and it continu-
ously monitors factors such as heap memory usage 
and occurrence of deadlocks. It can also alert other 
operation monitoring tools using Simple Network 
Management Protocol (SNMP) traps, so it can also be 
used as a simple monitoring tool. The analyzer is an 
application that provides a GUI (graphical user inter-
face) displaying the various kinds of JVM informa-
tion obtained by the agent, and also provides analysis 
support.

2.1   Agent
The agent collects information related to heap 

memory. It was built conforming to the JVM garbage 
collection (GC) implementation as described below 

*3	 Committer: A manager of an OSS project with the right to update 
the source code repository.

Fig. 1.   Fault analysis using HeapStats.
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in order to minimize the overhead for the application 
being monitored. 

When the GC is recovering heap memory from Java 
objects that are no longer in use, it looks for and 
marks objects still in use in order to prevent recovery 
of memory still in use (Fig. 3). The agent interposes 
a process into the function performing this marking 
process to obtain a variety of information, so the 
agent and the GC marking process operate together. 
To eliminate application programming interface 
(API) call overhead in doing so, it obtains data by 
directly referencing the heap memory data addresses 
needed.

The information gathered by the agent is narrowed 
down to what is needed for analysis, which keeps the 
volume of data small compared to that of a heap 
dump. The information obtained for each GC is out-
put to a log (a snapshot file) immediately, so there is 
no impact on memory.

The agent uses these techniques to obtain the data 
with low overhead. We used SPECjvm2008 [2], a 
standard benchmark for measuring the performance 
of Java runtime environments, to compare scores 
when using and not using HeapStats. It showed that 
the overhead was kept to 4.51%*4 (Fig. 4). This 
allows information to be collected continuously, even 
on an operating system, which is not possible when 
using heap dumps.

The agent also gathers a variety of information 
regarding aspects other than heap memory, for exam-
ple, server resources. In addition to the information 
normally gathered (Fig. 5(a)), the agent gathers even 
more information when an out-of-memory error 

(OOME) or deadlock occurs in the JVM (Fig. 5(b)). 
The agent runs on x86 and x86_64 architectures run-
ning Linux and Java SE6 or greater, and installation 
packages are available for Red Hat Enterprise Linux 
and others. 

2.2   Analyzer
The analyzer displays information related to the 

Fig. 3.   Applying GC marks.
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snapshot files and server resources collected by the 
agent. In particular, the information recorded in snap-
shot files is displayed graphically to aid analysis. A 
screen with the time sequence of heap memory usage 
information and the per-class number of objects and 
heap memory usage are shown in Fig. 6(a). A screen 
graphically showing the referential relationships for a 
class object (what classes reference an object of a 
given class)*5 is indicated in Fig. 6(b). This is often a 
large amount of information and can be difficult to 
analyze using conventional heap-dump analysis 
tools. To simplify the analysis, the analyzer provides 

functions to narrow the results by a particular class 
name or to sort them by the number of objects or the 
heap memory usage per class.

A concrete example of analysis using the analyzer 
is described below. 

3.   HeapStats application scenario

Testing and debugging related to heap memory can 

Fig. 5.   HeapStats data collection items.
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be done more efficiently by using HeapStats starting 
with the development stage. Java programs entrust 
the management of heap memory to the JVM, so they 
do not have to explicitly release memory. However, if 
a program unintentionally maintains references to 
some objects, the JVM cannot release the memory, 
and the heap memory usage increases, which can lead 
to running out of free space in heap memory (memo-
ry leaks). The heap memory analysis functions of 
HeapStats are useful for detecting memory leaks 
early.

Normally, memory leaks are discovered during 
development testing, but if they progress slowly over 
long periods of time or are triggered by a particular 
operation, they could manifest during operation as 
well. Insufficient heap memory can also occur even 

without a memory leak, such as when the amount of 
processing exceeds that anticipated during design, or 
when processing requiring a large amount of heap 
memory occurs. These can be related to the number 
of users or an increase in accumulated data, so they 
can occur after operating for a certain amount of time. 
Thus, even programs with adequate debugging and 
testing before release must be monitored for prob-
lems that could arise during operation, so HeapStats 
can be effective in the operational stages as well.

A scenario using HeapStats linked to operations 
monitoring tools through SNMP is shown in Fig. 7. 
Notifications that predict faults related to the detailed 
state of heap memory—such as particular classes 
consuming large amounts of heap memory—are sent 
to related parties, which enables a rapid response 

Fig. 6.   HeapStats analysis screen.
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when such faults occur. 

4.   Analysis example

We next introduce an example of a defect occurring 
during testing at the NTT OSS Center, which we were 
able to locate quickly. During testing of a system into 
which HeapStats had been installed, Major GC*6 
events began occurring frequently, causing perfor-
mance to drop. The heap memory usage stacked area 
chart (Fig. 8) showed that the program was consis-
tently using quite a large amount of memory, and 
most of it was allocated to byte arrays. Next, we dis-
played the class reference relation diagram (Fig. 9) 
and identified that the class for messages exchanged 
between application servers for application server 

redundancy (clustering) was using a large number of 
byte arrays. From that, we focused our investigation 
on tuning the settings related to clustering and were 
able to quickly identify the cause. If we had not used 
HeapStats, it would have been difficult to understand 
the reference relations between classes, and we would 
not have known why byte arrays were being used. 
Consequently, it would probably have taken much 
longer to identify the cause.

5.   Future development

In the future, we will promote HeapStats as an 

Fig. 8.   Stacked area chart.
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Fig. 9.   Class reference relation graph.

*6	 Major GC: A process in which the JVM performs recovery over 
the entire heap memory. 
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effective analysis tool that can be used to solve prob-
lems during development, testing, and operation by 
introducing it into projects, and to contribute to 
reducing the total cost of operations. We also hope to 
add functionality based on user feedback, and to 
make further quality and performance improvements. 
Moreover, we would like to integrate it with other 

OSS analysis tools. 
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