Feature Articles: Technologies for Promoting Use of Open
Source Software that Contribute to Reducing TCO of IT Platform

Dramatic Changes in Java

Troubleshooting!

—Pursuing Uncompromising
Low-overhead Implementations

Yasumasa Suenaga

Abstract

This article focuses on the work of one of the researchers who contributed to a Feature Article in this

issue.

Keywords: HeapStats, OSS, Java

In April 2013, the NTT Open Source Software
(OSS) Center released HeapStats, a Java Virtual
Machine (JVM) monitoring and analysis support
tool, as open source software (OSS). This attracted a
great deal of interest from various people inside and
outside the NTT Group. We also had the gratifying
experience of being awarded the Prize for Excellence
among Java technologists representing Japan at the
Java Day Tokyo 2013 event. Installations of Heap-
Stats within the NTT Group are increasing and have
begun to produce good results in analyzing the sourc-
es of problems when and where they occur.

The NTT OSS Center provides support and prob-
lem analysis for organizations adopting various types
of OSS. I primarily handle problem analysis related
to Java, and I quite often encounter bugs related to
regions of Java heap memory that are not being
released properly by garbage collection (GC), the
mechanism that recovers unused memory. These are
called memory leaks. Analyzing such problems used
to be very difficult because to identify the cause, it
was necessary to follow the state of the Java heap
memory over the time sequence leading to the mem-
ory leak. However, in most cases, there was no infor-
mation indicating when the memory leak occurred,
and to get such information, appropriate settings had
to be set before waiting for the leak to be reproduced.

Because of this, we began developing HeapStats as a
way of gathering information that can be analyzed
immediately, without waiting to reproduce the prob-
lem.

Java provides an application programming inter-
face (API) for collecting information, so we initially
used it to create a prototype. However, when we tried
to use it, we found that it caused a large drop in sys-
tem performance. From past experience supporting
development projects, we knew we could not allow
any drop in overall system performance when gather-
ing information about problems that occur with low
probability. In the field of motor sports, a mechanic
uses his utmost skill in tuning his machine to ensure
high performance in various environments. Similarly,
our goal with HeapStats was to operate with low
overhead in various environments (applications).
Therefore, we considered every detail down to the
central processor unit (CPU) architecture in develop-
ing it. We studied the source code of OpenJDK (an
open-source implementation of the Java Platform),
but also analyzed the JVM executable binary by fol-
lowing processing at the CPU instruction level, and
we thoroughly investigated the movement of data
within JVM by checking the actual placement in
memory and the instruction sequences using a debug-
ger. As a result, we synchronized HeapStats perfectly

NTT Technical Review



Feature Articles

with the GC, and in doing so, we established a meth-
od for gathering information with the least possible
load on the system. Furthermore, we selected CPU
instructions more efficiently by introducing SIMD
(single-instruction multiple-data) instructions and
branch prediction, which are difficult to support using
only compiler optimization options, and we repeat-
edly tested and fine-tuned the implementation. As a
result, HeapStats operates efficiently and fully uses

Yasumasa Suenaga

Senior Expert, OSS Promotion Unit, NTT
Open Source Software Center.

He received the B.E. in information and com-
munication engineering from Tokyo Denki Uni-
versity, Tokyo, in 2006. He joined the NTT
Group in 2006. He is a committer of IcedTea
(HeapStats), and an author of the JDK9 develop-
ment community. In April 2014, he moved to
NTT Comware.

Vol. 12 No. 6 June 2014

the features of the CPU.

The key to growth for HeapStats is to increase the
number of users and developers, so we plan to pro-
mote it to Java technologists around the world. We
will also strive to improve the features and quality of
HeapStats, which will contribute to improving the
quality of systems that use Java. My goal is to see
engineers around the world turning to HeapStats for
Java memory analysis.



