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1.   Introduction

Significant progress in computer technology has 
been made since Alan M. Turing, a British mathema-
tician, invented the mathematical model of comput-
ers. State-of-the-art computers still follow Turing’s 
model in principle. The term classical computers 
refers to all current computers and their possible 
extensions, which are based on Turing’s model, and 
classical computation/algorithms refers to the com-
putation/algorithms performed on classical comput-
ers. 

Quantum computers are novel computing devices 
that make effective use of quantum-mechanical phe-
nomena, so their mechanism is quite different from 
Turing’s model (Table 1). It is therefore expected that 
quantum computers, which are being extensively 
studied all over the world, will be able to solve a vari-
ety of problems significantly faster than the intolera-
bly long time it takes to solve them on classical com-
puters. To solve problems on quantum computers, we 
need to write a series of explicit operations to be per-
formed on the hardware of quantum computers, as in 
the case of current computers. Such a series of opera-
tions is called a quantum algorithm. The computation 
time on quantum computers heavily depends on the 

quantum algorithms, just as the computation time of 
current computers depends on the classical algo-
rithms. It is therefore necessary to research and 
develop fast quantum algorithms as well as scalable 
and robust hardware for quantum computers.

2.   Fast quantum algorithms developed by Shor 
and Grover

The most famous quantum algorithm is arguably 
the one developed by Peter W. Shor in 1994 [1] that 
factors integers exponentially faster than any known 
classical algorithm. The integer factoring problem is 
a basic mathematical problem that is very difficult in 
the sense that a long history of research on this prob-
lem has not yet succeeded in finding a fast classical 
algorithm. In fact, the security of the RSA (Rivest-
Shamir-Adelman) cryptosystem, used in practice on 
the Internet for secure data transmission, is based on 
the hardness of this problem. Shor’s discovery thus 
has the potential to affect a great number of people, 
even those outside academic communities, since it 
implies that quantum computers would be capable of 
breaking the cryptosystem. This is obviously an 
unhappy scenario.

Extensions of Shor’s algorithm can solve hidden 
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subgroup problems extremely quickly. In the research 
field of quantum algorithms, subsequent studies 
extended Shor’s algorithm to a collection of more 
general mathematical problems. Although these 
extensions are highly important in a theoretical sense, 
they seem to have little relation to the problems that 
are familiar to people outside the theory field, and it 
would thus be unlikely that those people would 
appreciate the extended algorithms.

The quantum search algorithm (quantum search in 
short), developed by Lov K. Grover [2] in 1996, is 
also very well known. This algorithm solves the prob-
lem of finding a desired piece of data from among N 
pieces of data. Classical computers clearly need 
roughly N accesses to the data in the worst case, even 
if we allow a small error probability. However, the 
quantum search can find a desired piece of data with 
high probability only with approximately N  
accesses. Although this cannot achieve the exponen-
tial speedups over classical algorithms, in contrast to 
the case of factoring integers, the quantum search can 
still yield a significant speedup whenever N is very 
large. 

One of the advantages in considering the search 
problem is that the definition of the problem is so 
simple that it can often emerge as a subproblem of 
various other problems that we want to solve. In other 
words, the algorithms for the problem potentially 
have wide applicability. One can imagine the follow-
ing straightforward scenario; if one finds a search 
problem as a subproblem of some other problem, 
then one can solve the search problem significantly 
faster with the quantum search, which may imply a 
fast algorithm for the whole problem. In many cases, 
however, it is not an easy task to carve a search prob-
lem out of the original problem; even if one succeeds 
in doing so, it may be necessary to adapt the algo-
rithm appropriately, often in a non-trivial way. This is 
why the search problem and its generalizations are 
still major topics in quantum computing research 
(Fig. 1).

3.   Quantum bits and superposition

The unit of information on quantum computers is 
called a quantum bit, or a qubit. A qubit represents 
any superposition of 0 and 1, including 0 or 1 as a 
special case (Fig. 2). Similarly, two qubits represent 
any superposition of 00, 01, 10, and 11. Moreover, n 
qubits represent any superposition of 2n bit-strings: 
0…0 through 1…1. The superposition is called the 
quantum state over the qubits. In terms of linear alge-
bra, we can describe it as follows: Consider a two-
dimensional complex Euclidean space with two 
orthogonal basis vectors, 

→
0 and 

→
1, of unit length, and 

identify 
→
0 and 

→
1 with “0’’ and “1,’’ respectively. Then, 

a superposition of 0 and 1 means simply a linear com-
bination of the unit vectors a

→
0 + b

→
1, where a,b are 

complex numbers such that |a|2 + |b|2 = 1. Similarly, 
a superposition over n qubits is a linear combination 
of 2n orthogonal vectors of unit length. Since qubits 
are identified with vectors, the operations over qubits 
should be mappings over vectors. More concretely, 
the operations must be unitary operators*1 or orthogo-
nal projectors, which are linear transformations over 
complex vectors. In particular, applying a set of 
orthogonal projectors summed to the identity is called 
measurement, which produces a classical outcome 
and a quantum state. To get a classical value as the 
output of a quantum algorithm, we thus need to take 
measurements over a quantum state generated by the 
algorithm.

4.   The search problem and quantum algorithms

To solve a problem such as the search problem that 
depends on N input data X1, …, XN, we need to access 
the input data. Formally, we can think of this as fol-
lows: 

*1	 A unitary operator is a linear operator that maps a vector to an-
other such that it does not change the inner product of any two 
vectors. Intuitively, the operator does not change the angles be-
tween any two vectors and the length of any vector.

Table 1.   Comparison between classical and quantum computers.

Classical computers Quantum computers

Unit of information Bit Quantum bit (qubit)

Mathematical expression of information Logical values (True/False) Complex vectors

Elementary operations Logical operations
(AND, OR, NOT)

Linear operators
(unitary operators)

Model of computation Turing machine, logic circuits Quantum Turing machine, quantum circuit
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We receive Xk by making a query with the index k. We 
call such a query a classical query. On quantum com-
puters, the index associated with a query is expressed 
with qubits, and thus a query, in this case called a 
quantum query, will be a superposition of classical 
queries over all indices k ranging from 1 to N; accord-
ingly, the answer to the quantum query will be the 
corresponding superposition of all Xk, where k ranges 
from 1 to N. With the ability to make quantum que-
ries, the quantum search may be stated as follows (we 
assume for simplicity that each piece of input data is 
either 0 or 1, but this is not essential to the quantum 
search).

Theorem (Quantum Search) Given N input data X1, 
…, XN ∈ {0,1}, there exists a quantum algorithm that 
finds an index i with Xi = 1 with high probability by 

making approximately N  data accesses (i.e., quan-
tum queries).

To estimate the total number of steps required to 
solve a problem, it is necessary to count the number 
of steps taken to process the input data obtained via 
queries, as well as the number of accesses to the input 
data. However, we will focus only on the number of 
accesses to the input data, since it is a dominant factor 
in the search problem and the other problems dealt 
with in this article.

As an application of the theorem, let us consider the 
problem of testing the planarity of a given graph.

Example 1: Graph planarity testing
We say that a graph is planar if the graph can be 

drawn without crossing any pair of edges on a two-

Fig. 2.   Qubits and superposition.
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Fig. 1.   Quantum algorithms.
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dimensional plane (Fig. 3). It is well known that a lot 
of graph-theoretic problems that are hard for general 
graphs can be solved efficiently on planar graphs. 
Testing the planarity of graphs is hence one of the 
particularly important problems in testing graph 
properties. Let us define our problem more formally. 
We assume that graph G is an undirected graph*2 
consisting of n vertices. The input data are given as 
the information consisting of whether an edge exists 
between each pair of vertices, more concretely, the 
set of Xij defined as follows; For each i = 1, …, n and 
j = 1, …, n with i < j, define Xij = 1 if there is an edge 
between (i, j), and Xij = 0 otherwise (that is, Xij is the 
(i, j)-element of the adjacency matrix*3 of G). The 
problem is determining with high probability if the 
graph represented by these 1

2 n(n − 1) pieces of data, 
Xij, is planar. The key tool for carving out a search 
problem is a very old theorem discovered by Euler in 
the 18th century.

Theorem: If a graph with n vertices is planar, then 

the graph has at most 3n − 6 edges.

With this theorem, we divide the problem into the 
following subproblems (Fig. 4).
(1)	� Identify 3n − 5 edges from among the 1

2 n(n − 1) 
candidates of edges (in particular, this means 
identifying all edges, if the graph has at most  
3n − 6 edges).

(2)	� If Step (1) identifies exactly 3n − 5 edges, the 
graph is not planar according to Euler’s theorem, 
since 3n − 5 > 3n − 6.

(3)	� If Step (1) identifies at most 3n − 6 edges, all 
edges have been identified; then, without further 
queries, determine whether the graph is planar 
with a known algorithm.

Note that only Step (1) makes queries. With a little 

Fig. 4.   Quantum algorithm for testing planarity of a graph.
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*2	 An undirected graph is a graph whose edges have no directions.
*3	 For a graph with n vertices, the adjacency matrix A of the graph 

is an n-by-n matrix such that each element A[i,j] represents the 
existence of an edge between the vertices i and j.

Fig. 3.   Planarity of a graph.

The property that the graph can be drawn on a 2D plane without crossing edges.
Example: (A) is not planar. (B) is obtained from (A) by removing an edge. Since
(B) can be drawn as in the rightmost figure, (B) is planar.

(B) planar(A) non-planar
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more thought, it is possible to see that Step (1) can be 
realized by solving 3n − 5 times the problem of 
searching for an edge. We can hence speed up Step 
(1) with the quantum search (plus some modifica-
tions). Consequently, we can prove that roughly n1.5 
quantum queries are sufficient to test the planarity of 
a graph on quantum computers, while nearly n2 clas-
sical queries are required on classical computers [3]. 
We should emphasize that the key to carving out a 
search problem is the effective use of a theorem in the 
field of graph theory. There are many other important 
properties for which quantum speedups can be 
achieved, examples of which include testing graph 
connectivity*4 and determining the existence of Ham-
iltonian paths*5.

5.   A generalization of quantum search

Let us sample a piece of input data at random on a 
classical computer. In other words, we choose a piece 
of data from among X1, … XN uniformly at random 
and access it. If there is exactly one desired piece of 
data among the N input data, the probability that a 
randomly chosen piece is the desired one is only 1/N. 
In fact, very roughly speaking, what the quantum 
search does is to iterate this random sampling in 
superposition N  times. Note that amplifying the 
success probability 1/N of the random sampling 
nearly to one requires roughly N times on classical 
computers. In this sense, we would say that the quan-
tum search amplifies the success probability nearly to 
one with substantially fewer iterations. This view-
point can be stated more generally as follows.

Theorem (Quantum Amplitude Amplification [4]) 
Consider a classical algorithm that solves a problem 
with probability p by accessing input data c times. 
Then, it is possible to construct a quantum algorithm 
that solves the problem with a probability close to one 
by accessing input data roughly c/ p  times. More-
over, if the exact value of p is known, it is possible to 
amplify the probability to one.

In the case of random sampling for the search prob-
lem, the parameters will be c = 1, p = 1/N. The result-
ing quantum algorithm thus accesses the input data 
(roughly) c/ p  = N  times. This means that a spe-
cial case of the theorem is Grover’s algorithm. Intui-
tively, the theorem says that roughly 1/ p  iterations 
of the base classical algorithm in superposition can 
amplify the success probability p nearly to one. A 
similar idea can be applied to even distributed algo-

rithms on a quantum network*6 consisting of multiple 
quantum computers. 

Example 2: The leader election problem 
The leader election problem is a fundamental prob-

lem in the distributed computing field in that it often 
appears as a subproblem of various distributed com-
puting problems. The goal of the problem is to elect a 
unique leader from among all nodes in a network 
(Fig. 5). The problem is seemingly easy, but in the 
most general case where each node does not neces-
sarily have a unique identifier, it is mathematically 
proved that the problem cannot be solved within any 
bounded time with probability one by using classical 
computation and communication (i.e., sending/
receiving bits through communication channels). In 
contrast, we proved that, if quantum communication 
and computation can be used, the problem can be 
solved within a certain bounded time with probability 
one [5]. This means that classical distributed comput-
ing and its quantum counterpart are qualitatively dif-
ferent. The first proof of our result did not use the 
quantum amplitude amplification, but an idea of 
another proof that employs the quantum amplitude 
amplification is given as follows. 

First consider the following simple classical algo-
rithm: (1) Every node flips a coin; (2) the algorithm 
succeeds only when there is exactly one node that 
sees heads, in which case, the node will be elected as 
a leader. We can easily see that the success probabil-
ity of this algorithm is p = n/2n , where n is the num-
ber of nodes. Since we know the exact value of the 
success probability, we can construct a quantum algo-
rithm that amplifies the success probability to one by 
repeating the coin flipping roughly 1/ p  = 2n/n  
times together with the quantum amplitude amplifi-
cation. In fact, a much more sophisticated version of 
this idea flips coins roughly n times. 

*4	 The connectivity of a graph is the property that, for any two ver-
tices of the graph, there exists a path, i.e., a sequence of edges, 
from one vertex to another.

*5	 A Hamilton path of a graph is a sequence of edges of the graph, 
such that the sequence visits every vertex exactly once.

*6	 A quantum network consists of multiple quantum computers and 
quantum communication links between them. Quantum commu-
nication is the communication of qubits, which has already been 
achieved for practical use—for example, QKD (quantum key dis-
tribution)—by transmitting photons in a quantum state through 
optical fibers. 
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6.   Conclusion

The development of quantum computation theory 
has progressed significantly in the last two decades. 
Recent research on quantum algorithms shows rich 
connections with classical computer science; state-
of-the-art quantum search algorithms stem from (the 
quantum version of) random walk*7 or semidefinite 
programming*8, which are major technical tools in 
classical computer science. These connections will 
make it possible to make progress in both quantum 
and classical computer science in a collaborative way. 
Moreover, it is obviously important to study how to 
transform the high-level description of a quantum 
algorithm into a low-level description, i.e., a quantum 
circuit. A lot of fundamental techniques for this trans-
formation have been intensively studied as well (e.g., 
[6]). Nevertheless, there are still a lot of fundamental 
problems to be solved before we can gain a deeper 
understanding of the potential power of quantum 
computing. To solve these problems and acquire new 
knowledge, we need to develop more novel tech-
niques by making the best use of various ideas in 
related fields such as mathematics, physics, and clas-
sical computer science.
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Fig. 5.   Quantum algorithm for electing a leader.
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