
� NTT Technical Review

1. Introduction

Software reuse is an idea that goes back a long way
in the software development process. At the first soft-
ware engineering conference held in Garmish, Ger-
many in 1968, the idea of software components was
presented. Since then, the development of methods
for software reuse has had a great influence on the
software development process. Some reuse methods
commonly used in the software development process
are listed in Table 1.

Although some reuse methods have become com-
mon, there have also been a lot of failures. For
example, the San Francisco Project that was initiated
in the late 1990s aimed to share and reuse business
software components, but the project ended unsuc-
cessfully.

Successful methods of software reuse target com-
ponents of the software infrastructure such as small
common libraries and frameworks for routine pro-
cessing. Thus, the benefit of reuse to productivity is
limited. Although the use of packages is regarded as
an effective reuse method, packages tend to be usage-
and business-specific. Thus, the usage of packages is
also limited. As a result, the progress made in imple-
menting reuse techniques has stagnated.

2. Transforming reuse techniques with big data
of software development assets

A notable change has been occurring in systems
development that may transform the existing reuse
techniques. This change is the digitization of all sorts

of development assets. Extremely large volumes of
development related assets including not only source
codes but also documents, testing materials, and
records of development projects are now digitized
and distributed. The important point here is that
development assets are in digitized form and avail-
able for computer processing.

For example, development documents are convert-
ed to the XML (Extensible Markup Language) for-
mat using Office tools or UML (Unified Modeling
Language) editors. Bug information is consolidated
in a database using a BTS (bug tracking system) proj-
ect management tool.

NTT DATA creates and accumulates approximately
50 million steps of source programs annually and
more than 1 million files of documents for the pro-
grams. In addition, digitized data of development
assets have become widely available for different
organizations over the web. Currently, roughly more
than 100 million webpages of development informa-
tion are available on the web.

Big data has become a major trend. Techniques and
tools supporting this trend, and those used for captur-
ing, storing, and analyzing large volumes of different
datasets, are readily available. More specifically,
sophisticated data processing techniques including
text searching, non-structured data analysis, data
mining, pattern matching, natural language process-
ing, large-scale distributed processing, and machine
learning can be used. Therefore, it is important to
develop new methods for reusing as much as possible
large volumes of digitized development assets in the
software development process by applying advanced

Feature Articles: Technology for Innovating Software Production

Efforts to Reuse Software Assets
Eiji Yoshida

Abstract
While the technique of software reuse has been successful to some extent, a lot of failures have also

been witnessed due to the inherent difficulty of reusing software. However, recent trends in big software
data may lead to a solution to this problem. This article describes NTT DATA’s latest research and devel-
opment activities involving software reuse techniques.

Keywords: software engineering innovation, software reuse technique, software repository mining

Vol. 12 No. 12 Dec. 2014 �

Feature Articles

data processing techniques.

3. Why is reuse difficult?

The difficulty in reusing software comes down to
cost, specifically, the cost related to context mis-
matching. That is, the cost of reuse increases due to
mismatching of contexts (backgrounds and condi-
tions). Each reusable asset has its own suitable con-
text. If an asset is applied to even a slightly different
context, the assent cannot be used as is, and it requires
customization. As a result, it is often said that if you
need to customize 20% (or more) of reusable assets,
it is better to spend the money on developing a pro-
gram from scratch.

If we go deeper into the issue of context mismatch-
ing, two difficulties of reuse emerge. One difficulty
arises in creating reusable assets and the other in
applying reusable assets.

4. Systematic reuse and experience-based reuse

The difficulty of creating reusable assets means
that it is difficult to systematically create assets with
the intention of widely reusing them in different soft-
ware programs in the future. In other words, it is dif-
ficult to develop reusable software components that
are not needed for the current software functions but
that may be widely used in the future. We often hear
that creating a reusable component is three times as
difficult as creating a module used in a single pro-
gram. In fact, if developers know in advance that they
will have to develop several similar types of software,

a systematic reuse method might be effective. How-
ever, functions that are not expected at the beginning
of development are often required as the development
progresses. Thus, it is extremely difficult to picture a
future need and to develop a highly reusable resource
in a real development process. In addition, it is likely
that functions implemented for expected future use
may never be used.

If that is the case, is it possible to modify existing
assets that have been developed in order to make
reusable assets or to extract reusable assets from the
existing assets by analyzing them? Some software
development projects have included steps to identify
common functions from multiple different develop-
ment processes and to make reusable components for
them. However, most of these activities are not sys-
tematically implemented. They are performed with-
out a plan or, in a more favorable sense, are based on
experience.

In addition, efforts to create reusable components
are not extensively and widely implemented because
such efforts depend on the developers’ capability and
foresight as well as their spare time in projects.
Therefore, it is important to support activities carried
out to make reusable components based on experi-
ence.

More specifically, even if a software program has
been developed and reused by a simple copy-and-
paste method without any systematic reuse planning,
it is possible to extract and generate highly reusable
designs and source codes by automatically analyzing
source codes and design documents to identify com-
mon components and functional differences.

Table 1. Common reuse methods.

Methods for software reuse Description

Subroutine Became widely used as structured programming evolved.
Frequently used codes are packed into subroutines as program
components. Subroutines are used in relatively limited environments
or for specific types of software.

Class library, framework Became popular as object-oriented language evolved and
progressed. Software components are highly scalable and easily
reusable. Many components are developed for reuse in multiple
projects. Some components are used worldwide as open source
software.

Package A large set of software components for transactions is reused
instead of using small program units separately. Packages are
commonly used in ERP (enterprise resource planning) by, for
example, SAP.

Software patterns Standard formulas of software development. Typical examples are
design patterns containing standard formulas for software design
and architecture patterns containing standard formulas for software
structure.

� NTT Technical Review

Feature Articles

5. Difficulty of understanding reusable assets

The second difficulty of applying reusable assets
relates to understanding the reusable assets. When
reusing a component, we need to precisely under-
stand what information is required for reuse such as
the component’s function, application, and customiz-
able parts.

Understanding reusable components is a time-con-
suming process and is often very difficult. As men-
tioned earlier, because each reusable asset has a suit-
able context for application, it is difficult to under-
stand both the asset and its context. As a result, reuse
is often avoided. This issue may be solved by manu-
ally collecting information required for reuse,
although it would incur a large cost. Therefore, we
need a method for automatically extracting necessary
information from existing assets to help understand
reusable assets and expedite the application of reus-
able assets.

6. Achieving better understanding
with asset catalogs

NTT DATA has been implementing a method in a
financial systems development project to automati-
cally sort existing assets and generate asset catalogs
(Fig. 1). This helps developers to understand the reus-
able assets. In the target project, there are more than
1600 function assets in a total of 7 systems. When a
new system is developed based on the existing assets,
it takes a long time to examine the reusability of the

assets and the reuse methods. We have automatically
analyzed large volumes of existing source codes and
documents to identify information about availability,
similarities, and differences of functions and have
created asset catalogs that make it easier to under-
stand the reusable assets. We are using the asset cata-
logs for a new system development and have reduced
the man-hours for reuse design by 84% (8% of the
total project man-hours).

This achievement is due to the fact that we have
targeted multiple functionally similar systems and
because design documents are fully standardized for
automatic information analysis. NTT DATA is cur-
rently studying asset analysis methods that can be
applied to wider and more diverse assets.

7. Software repository mining

In terms of utilizing big data generated in develop-
ment projects, we need to focus on direct use of assets
as well as methods that can identify useful knowledge
for development from large amounts of data on devel-
opment assets.

Currently, not only source codes but various data
including documents and bug information can be
generated and accumulated in systems development
projects. Studies on methods of extracting useful
knowledge for development from large amounts of
development data using data mining techniques are
gaining momentum. In the academic field, these stud-
ies fall under mining software repositories. Research-
ers regularly exchange ideas on this topic at an

Fig. 1. Example of generation of asset catalog to help developers understand assets.

data

Asset catalog

A system
Software asset

Function
Input/output
data …

A system

Similarity
to A

B system

function

XX function

YY function

ZZ function

XX form

YY file

ZZ form

B system
Software asset

Function addition

D system
Software asset

E system
Software asset

C system
Software asset

Existing assets in a financial systems
development project

(Assets of more than 1600 functions)
R

eu
se

R
euse

Reuse

R
euseR

eu
se

R
eu

se

Function
addition
Function
addition

Automatic
generation

Information generated in an asset catalog:
1. Program list, 2. Link to source code, 3. Program differential
information, 4. Interface (IF) list, 5. Link to design document,
6. IF differential information

Existence ExistenceSimilarity
to B

Similarity
to C

…Similarity
to C

88

83

100

90

95

98

92

100

100

88

83

100

90

98

75

100

100

100

function

function file

Form

Vol. 12 No. 12 Dec. 2014 �

Feature Articles

annual international conference [1, 2].
Software repository mining does not directly use

existing development assets. Rather, it analyzes large
volumes of development assets, identifies trends and
patterns, and converts the identified trends and pat-
terns into knowledge that is used for development.
For example, in bug module prediction, bug records
and source code conditions (e.g., size, complexity,
degree of coupling, intensity) are analyzed, and mod-
ules having a high likelihood of bugs are identified
(Fig. 2).

NTT DATA is developing methods for applying
this bug module prediction technique to quality man-
agement in the system development process. If we
can quantitatively predict modules having a high like-
lihood of bugs, we can develop a more effective and
efficient testing strategy by focusing on testing of the
particular modules and appropriately allocating man-
hours for testing. A similar approach involves pre-
dicting bug modules according to source code correc-
tion logs and using the predictions for review [3].

Possible applications of software mining reposito-
ries in addition to bug module prediction include
identifying reusable knowledge and communicating
the results of analyses within a development team.
Recent advances in more mature data analysis tech-
niques such as data mining and machine learning as
well as development of high performance computing
environments where we can analyze large volumes of
development data in a realistic processing time will
expedite the evolution of software repository min-
ing.

8. Conclusion

Maximizing the use of development assets that are
being accumulated in large volumes is a key to further
developing reuse techniques. NTT DATA aims to
shift from quantity to quality-based reuse approaches
and will continue to develop new reuse methods that
will drastically improve software development pro-
ductivity.

References

[1]	 A. Monden, “Technical Trends and Application of Software Reposi-
tory Mining,” Proc. of Software Japan 2013, Tokyo, February 2013.

[2]	 The 11th Working Conference on Mining Software Repositories,
	 http://2014.msrconf.org/
[3]	 Bug Prediction at Google,
	 http://google-engtools.blogspot.jp/2011/12/bug-prediction-at-google.

html

Fig. 2. Example of software repository mining.

Bug inclusion likelihood

Bug
inclusion

likely

Bug
inclusion

likely

File server
(Document)

Development
resource data

Configuration
management server

(Source code)

BTS
(Bug information)

Bug module
prediction
analysis

Review/testing
targets

• Source code metrics analysis
(sizes, complexity, change
frequency, etc.)

• Bug records analysis (locations,
frequency, causes, etc.)

Eiji Yoshida
Research Manager, Center for Applied Soft-

ware Engineering, Research and Development
Headquarters, NTT DATA Corporation.

He received the B.Eng. and M.Eng. in com-
puter science from Tsukuba University, Ibaraki,
in 1996 and 1998, respectively. He joined NTT
DATA in 1998 and studied network technologies
and middleware technologies such as CORBA
(Common Object Request Broker Architecture)
and web services during 1998–2006, and until
recently studied software engineering, particu-
larly techniques and tools for automating the
design, implementation, and testing of large
software systems. He is currently studying soft-
ware analytics technologies that take full advan-
tage of data generated in software development
projects.

http://2014.msrconf.org/
http://google-engtools.blogspot.jp/2011/12/bug-prediction-at-google.html

