
� NTT Technical Review

1. Overview of PaaS

The NTT Software Innovation Center is developing
a Platform as a Service (PaaS) platform*1 using Cloud
Foundry [1, 2] as part of efforts to build a cloud infra-
structure using open source software.

The objective is to provide a platform for an appli-
cation run-time environment, that is, a software stack
that combines the various types of software needed to
run applications such as the operating system (OS),
various libraries, frameworks, and middleware such
as web servers, databases, and load balancers on top
of Infrastructure as a Service (IaaS) (Fig. 1). A PaaS
provider provides PaaS users with a common run-
time environment that can be shared among various
types of applications, as well as services such as a
health monitor for running applications.

The greatest advantage of using PaaS is that it
eliminates some of the work involved in building the
run-time environment for application development
and operations. Application development can be
accelerated because test environments can be
obtained easily using PaaS. Applications can be oper-
ated efficiently because computing resources with a
pre-built environment can be procured easily while
scaling the applications to a large size.

The need for PaaS has increased recently, and as a
result, many commercial PaaS services have appeared
on the market, including the Cloudn PaaS [3] service
introduced by NTT Communications in December,

2012, as well as Google App Engine, AWS (Amazon
Web Services) Elastic Beanstalk, Microsoft Azure,
Heroku, and IBM Bluemix (see Table 1).

2. Cloud Foundry: open source software project

Cloud Foundry is PaaS platform software being
developed as open source. In contrast to services such
as Microsoft Azure or Heroku, which are built with
proprietary, closed-source software, Cloud Foundry
uses published source code that anyone can use to
build their own PaaS platforms.

The strengths of Cloud Foundry can be summarized
in three main points, described below.

(1)	 No vendor lock-in
Because Cloud Foundry is open source, PaaS users

can avoid dependence on a particular PaaS provider
(vendor lock-in). Generally, the functions provided
by each PaaS and how they are used differ, so there is
no compatibility between them. Because of this,
migrating an application developed for a particular
PaaS to another PaaS requires rewriting the source
code and revising operational procedures in most

*1	 PaaS platform: In this article, “PaaS” refers to the PaaS service
itself, and “PaaS platform” refers to the technology stack used to
build the PaaS. “Application” refers to applications (services)
running on the PaaS. “PaaS user” refers to users developing and
providing applications on the PaaS, while “application user” re-
fers to users of those applications.

PaaS Platform Based on Cloud
Foundry
Ken Ojiri, Noburou Taniguchi, Takahiko Nagata,
Shinichi Nakagawa, and Yudai Iwasaki

Abstract
The NTT Software Innovation Center is working on the development and commercialization of Cloud

Foundry, which is open source PaaS (Platform as a Service) platform software. This article introduces
the latest trends with Cloud Foundry and our activities related to its expansion to cloud businesses.

Keywords: cloud, open source, PaaS

Feature Articles: R&D Efforts in Cloud Computing
Platform Technologies through Open Innovation

Vol. 13 No. 2 Feb. 2015 �

Feature Articles

cases. This makes it difficult to handle conditions
such as sudden increases in user fees or the shut-
down of a service. These can pose a great risk, par-
ticularly for users who operate commercial applica-
tions. For PaaS services that use Cloud Foundry,
compatibility is guaranteed and there is no vendor
lock-in, so these sorts of migration problems are
avoided. Users can select a PaaS provider according
to conditions, or even build their own private PaaS.

(2)	 Flexible system configuration
To enable Cloud Foundry to satisfy varying PaaS

requirements, the overall system is divided into
loosely connected components able to operate in a
multiple-active configuration (n-ACT) and designed
to be variously combined as needed (Fig. 2). This
makes it possible to build a PaaS according to the
required scale and reliability, from a small-scale, pri-
vate PaaS with all components running on a single
machine, to a large-scale, public PaaS operating on
several thousands of machines. Components can also
be added or removed afterwards, so it is easy to start
by building on a small scale and later scaling out as
processing requirements increase.

Fig. 1. Hierarchical structure of technologies comprising a cloud.

SaaS

PaaS

IaaS

SaaS: Software as a Service

Application

Framework

Web server

OS

Database

OS

Framework

Web server

OS

Load balancer

OS

Virtual machine Virtual machine Virtual machine

Hypervisor Hypervisor

Physical machine Physical machine

Virtual machine

Table 1. List of PaaS services.

Service name PaaS provider name Features

Google App Engine Google Guarantees high scalability with proprietary APIs, BigTable, and other mechanisms

AWS Elastic Beanstalk Amazon Supports linking with other services provided using AWS

Microsoft Azure Microsoft Rich linking with Microsoft integrated development environment

Heroku salesforce.com Pioneering PaaS service supporting a variety of general programming languages

Force.com salesforce.com Rich business application logic

Cloudn PaaS*2 NTT Communications Equipped with Cloudn RDB integration, logging, monitoring, distributed applet functions

Pivotal Web Services*2 Pivotal Operated by Pivotal, leader of the Cloud Foundry community

IBM Bluemix*2 IBM Rich applet developer support functions, linked services

anynines*2 anynines Uses 100% European datacenters

OpenShift Red Hat

*2 Services using Cloud Foundry

API: application programming interface
RDB: relational database

Service using OpenShift Origin from Red Hat

� NTT Technical Review

Feature Articles

(3)	� Diversity of development languages and frame-
works

Applications developed using a variety of program-
ming languages such as Ruby, Java, JavaScript, and
PHP, and web application frameworks such as Ruby
on Rails, Sinatra, Spring, and Node.js can run on
Cloud Foundry. It also supports the Buildpack con-
cept introduced by Heroku, which can be used to run
applications using programming languages and
frameworks not supplied by the PaaS platform.

Besides Cloud Foundry, there is another open
source PaaS platform called OpenShift Origin, devel-
oped mainly by Red Hat Inc. At this point, Cloud
Foundry is a step ahead of OpenShift Origin in terms
of the number of contributing technologists, the level
of activity as an open source community, and adop-
tion by PaaS providers.

3. NTT laboratories initiatives

NTT laboratories have taken the following initia-
tives concerning the use of PaaS platforms based on

Cloud Foundry.

3.1 Feature expansion and verification
3.1.1 �Increasing availability of applications

running on the PaaS platform
When PaaS users want to ensure availability to run

multiple applications, it is desirable to distribute
application deployment locations as widely as possi-
ble. Therefore, we have extended Cloud Foundry
application management features so that application
placement can span multiple datacenters and serv-
ers.

3.1.2 �Automating operations of the PaaS plat-
form

BOSH is software for PaaS platform management.
It deploys, launches, and monitors Cloud Foundry
components on IaaS platforms. We have developed
auto-scaling functions that cooperate with BOSH to
automatically adjust the number of virtual machines
on IaaS platforms when there are shortages or excess-
es of necessary resources such as the CPU (central
processing unit), memory, and network bandwidth.

Fig. 2. Cloud Foundry component architecture.

Users access applications
through web browsers.

PaaS user operations done
through CLI tool or WebGUI

PaaS user operations done
through CLI tool or WebGUI

Provides the Cloud Foundry
APIs and controls the overall
system

Traffic is routed based on host
names for each user application
or component being accessed.

Lo
ad

 b
al

an
ce

r

User applications
run on DEA

Performs user authentication
Monitors whether user applications
are running properly

Handles deployment and operation of
Cloud Foundry components on the IaaS

Gathers and provides various
logs from user applications

* Cloud Foundry components shown with white lettering

Web browser
 etc.

CLI etc.

CLI etc.

Storage RDB

etcd

User
application

User
application

Highly reliable messaging path

Router

Router

DEA

DEA

BOSH

Cloud
Controller UAA Health

Manager

Loggregator
traffic

controller
Loggregator

NATS

CLI: command line interface
DEA: droplet execution agent
UAA: User Account and Authentication

Vol. 13 No. 2 Feb. 2015 �

Feature Articles

3.1.3 �Building and operating a PaaS platform
spanning multiple IaaS systems

BOSH, as mentioned above, provides a CPI (Cloud
Provider Interface) that supports various IaaS plat-
forms, so Cloud Foundry can be installed on various
IaaS platforms. Cloud Foundry can also be used to
build and operate a single PaaS platform spanning
multiple IaaS platforms if IP (Internet protocol) com-
munication is possible between the IaaS platforms.
Thus, we have demonstrated the practicality of hybrid
clouds built and operated using a PaaS platform that
combines multiple public IaaS platforms, or com-
bines a public IaaS platform with a private IaaS plat-
form.

3.2 �Improved efficiency of operation processes
through link with NTT clouds Develop

NTT laboratories and NTT Innovation Institute,
Inc. (NTT I3) [4] are conducting a collaborative
experiment with NTT clouds Develop, a service that
supports installation of Cloud Foundry and DevOps.
NTT clouds Develop is a solution for implementing
the service development and operations processes
known as DevOps, which have attracted attention as
a side effect of the recent spread of agile software
development. By combining the improvements in
development and operations processes due to DevOps
with the operational efficiency of Cloud Foundry, we
expect to see substantial improvements in the effi-
ciency of development processes.

The use of DevOps to tightly integrate the develop-
ment and operations processes, which have previ-
ously been separate, means that services can be
updated dozens of times per day, much more quickly
and frequently than before. Frequent service updates
are essential for incorporating end-user needs in a
service, so it is a strong competitive advantage in
today’s market of rapidly changing needs. However,
there are barriers to introducing DevOps. A wide
range of tools must be mastered in order to implement
DevOps effectively. The tools depend on the applica-
tion, including source code version control and issue
ticket tracking, and also continuous integration (CI)
and server configuration management automation.
However, gaining mastery of all of these tools and the
know-how to combine them is not a simple matter. To
overcome these difficulties, NTT clouds Develop has
been designed to provide services with these various
functions already integrated, so that anyone can eas-
ily start using DevOps.

Integrating Cloud Foundry into NTT clouds Devel-
op should make service delivery even more efficient.

It was already possible to build server environments
automatically with NTT clouds Develop, but special-
ized know-how was necessary to configure features
such as those for clustering and monitoring of serv-
ers. Also, setting up servers in each environment
incurred costs in terms of both time and money, and
managing settings in each different environment was
a major operational burden.

Introducing NTT clouds Develop greatly improved
efficiency in terms of development tasks such as
source code and ticket management, although service
delivery, which is the final step, still required a great
deal of time and effort. Integrating Cloud Foundry as
a service delivery platform improved these issues
significantly. With Cloud Foundry, service delivery is
simplified to just setting parameters and pushing out
the source code. This enables not only the dedicated
operations team to perform the final updates but the
developers themselves to do it, too. The time required
for the pushed code to actually run can also be
reduced to minutes or even tens of seconds, so time
costs are also reduced. Cloud Foundry can also pro-
vide multiple environments, namely development
and production, so computing resources are used
more efficiently, and moving from the development
to the production environment is easier. When Cloud
Foundry is combined with NTT clouds Develop in
this way, the integration of development and opera-
tions, which is the key strength of DevOps, can be
taken to a higher level.

3.3 Contribution to the community
Having an active open-source community is essen-

tial for stability when using an open source product
such as Cloud Foundry. Thus, NTT laboratories will
participate in the Cloud Foundry Foundation [5] rep-
resenting the NTT Group, and will work to build the
Cloud Foundry community and expand PaaS in
Japan. With these two initiatives, we will also active-
ly contribute to the community by sharing informa-
tion such as publishing source code and making pre-
sentations at the Cloud Foundry Summit.

4. Future prospects

Cloud Foundry is excellent open source PaaS plat-
form software with very attractive features. NTT
laboratories will continue to contribute to the Cloud
Foundry community and work to expand the PaaS
market. In the future, in addition to our current initia-
tives, we will also work to enhance links between
Cloud Foundry and OpenStack, which is an influential

� NTT Technical Review

Feature Articles

open source IaaS platform, and to expand the devel-
opment of PaaS platforms to include private-cloud
use.

References

[1]	 Website of Cloud Foundry, http://cloudfoundry.org/
[2]	 Website of Cloud Foundry, GitHub, https://github.com/cloudfoundry
[3]	 Website of NTT Communications, Cloudn PaaS service,
	 http://www.ntt.com/cloudn_e/
[4]	 Website of NTT I3, http://www.ntti3.com/
[5]	 Cloud Foundry Foundation, December 9, 2014, “Cloud Foundry

Foundation Established to Advance Platform-as-a-Service,”
	 http://www.cloudfoundry.org/cloud-foundry-foundation-launch.html

Ken Ojiri
Senior Research Engineer, Cloud System SE

Project, NTT Software Innovation Center.
He received the B.S. and M.S. in engineering

from Osaka University in 1994 and 1996, respec-
tively. Since joining NTT in 1996, he has been
engaged in research and development (R&D) of
advanced intelligent networks, identity manage-
ment of Internet services, and cloud technolo-
gies. He is now focusing on expanding the PaaS
market and reforming the ways of Internet appli-
cation service development.

Noburou Taniguchi
Research Engineer, Platform Technology SE

Project, NTT Software Innovation Center.
He received the B.E. and M.E. in mechanical

engineering from the University of Tokyo in
1992 and 1994, respectively. Since joining NTT
in 1994, he has been engaged in R&D of multi-
media search engines, a copyright management
system, identity management technology (includ-
ing standardization activities in Liberty Alli-
ance), and an XML data management system.
During 2010–2014, he worked on a Desktop as a
Service system and a PaaS system at NTT Soft-
ware Corporation. He is currently involved in
R&D of PaaS systems. He is a member of the
Information Processing Society of Japan (IPSJ).

Shinichi Nakagawa
Senior Research Engineer, Supervisor, Cloud

System SE Project, NTT Software Innovation
Center.

He received the B.S. in physics from Saitama
University in 1987 and the M.S. in physics from
Chiba University in 1989. Since joining NTT in
1989, he has been engaged in R&D of telephone
and IP network systems, knowledge and infor-
mation sharing systems, and cloud systems. He is
a member of IEICE (Institute of Electronics,
Information and Communication Engineers).

Takahiko Nagata
Senior Research Engineer, Cloud System SE

Project, NTT Software Innovation Center.
He received the B.E. and M.E. from the Fac-

ulty of Instrumentation Engineering, Hiroshima
University, in 1993 and 1995, respectively. Since
joining NTT in 1995, he has been engaged in
R&D of high-speed communication processing
boards, reliable multicast delivery systems,
secure electronic voting systems, secure file
delivery systems, and cloud computing technol-
ogy.

Yudai Iwasaki
Software Engineer, NTT Innovation Institute,

Inc.
He received the B.A. and M.M.G. from Keio

University, Kanagawa, in 2009 and 2011, respec-
tively. He joined NTT Information Sharing Plat-
form Laboratories in 2009 and worked on Cloud
Foundry for three years. In August 2014, he
moved to NTT Innovation Institute, Inc. and is
now developing advanced cloud platforms. His
research interests are the Semantic Web, cloud
computing technology, and the Ada program-
ming language.

http://www.cloudfoundry.org/cloud-foundry-foundation-launch.html
http://www.ntti3.com/
http://www.ntt.com/cloudn_e/
https://github.com/cloudfoundry
http://cloudfoundry.org/

