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1.   Introduction

Electromechanical systems consist of a single 
degree of mechanical freedom hosting a spectrally 
pure resonance that is embedded in an electrical 
transduction circuit, and they have emerged as a ver-
satile platform for a range of technological applica-
tions and to study fundamental science [1, 2]. For 
instance, their small inertial mass and high quality 
resonance have enabled the development of ultra-pre-
cise sensors that can detect a single electron spin and 
even the mass of a proton leading to a new class of 
medicinal diagnostic technology [3–5]. The electrical 
transduction circuit can also enable the underlying 
potential energy landscape of the mechanical resona-
tor to be dynamically engineered, yielding a range of 
nonlinear motional dynamics that can be harnessed 
for both information storage and processing, which 
brings forth the concept of mechanical computation 
offering both ultra-low power consumption and the 
capacity for unprecedented parallel data processing 
[6–9]. 

Most tantalizingly, a high frequency mechanical 
resonator operated at sufficiently low temperatures 

can even condense into its quantum ground state, 
where its low mass and spectral purity yield quantum 
zero point fluctuations that are large enough to be 
observed, enabling a macroscopic quantum system to 
be studied [10–12]. In this instance, although the 
mechanical resonator is composed of billions of 
atoms, only the phonons sustained by the fundamen-
tal resonance mode are quantized, and it corresponds 
to a tangible vibration of the mechanical element. 
This phonon picture, namely the collective excitation 
of atoms in the fundamental vibration mode, enables 
concepts from atomic molecular optical (AMO) 
physics developed for photons, that is, a quanta of 
electromagnetic radiation, to be exploited. Indeed, it 
is the laser cooling techniques pioneered in AMO 
physics that have been utilized most successfully to 
cool the macroscopic mechanical oscillator so that on 
average, its fundamental mode is occupied by much 
less than one phonon [13, 14]. 

Although the notion of a macroscopic mechanical 
resonator composed of billions of atoms being con-
sidered only in terms of the number of phonons sus-
tained by its fundamental mode might seem counter-
intuitive, this paradigm has successfully been exploited 
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to demonstrate the signature feature of photonics, 
namely lasing but with the localized phonons in the 
mechanical resonator [15–18]. Consequently, the 
ability to cool a solid-state macroscopic mechanical 
resonator into its ground state opens up the possibil-
ity of generating an all-mechanical macroscopic 
entangled state [10, 19], which would enable founda-
tional aspects of quantum mechanics to be queried 
such as the nature of the quantum to classical divide 
and the absence of quantum phenomena in our every-
day classical world [20, 21]. 

2.   Two-mode squeezed states

Entangled photons in the guise of two-mode 
squeezed states were among the first non-classical 
states of light to be generated in the lab and nowadays 
are routinely siphoned from spontaneous parametric 

down-conversion [22]. This typically involves a χ(2) 
nonlinear crystal that is exposed to a strong laser 
pump beam whose dielectric polarization responds 
nonlinearly to the pump’s electric field. In this pro-
cess, a pair of photons—the signal and the idler—are 
generated at the expense of the pump photons, which 
conserve both energy and momentum, as depicted in 
Fig. 1(a). Remarkably, the quantum fluctuations in 
the amplitude and phase of the generated photon pair 
are correlated, as encapsulated by the Einstein, 
Podolsky, and Rosen (EPR) paradox, where their 
individual fluctuations are amplified, while their rela-
tive fluctuations are reduced below the vacuum noise 
level [23–26]. The EPR paradox recast in the Bell 
inequality has been routinely violated via the entan-
gled signal and idler photons whose fluctuations 
remain correlated even when they are separated over 
distances of kilometers [27, 28]. The non-classical 

Fig. 1.   �(a) Schematic illustration of the spontaneous parametric down-conversion process used to generate non-classical 
light where the signal and idler photons are entangled in a two-mode squeezed state. This process occurs at the 
expense of the pump photons where the signal and idler photons conserve both momentum kp = ks + ki, where k is 
the wavevector, and energy ωp = ωs + ωi. The nonlinear crystals typically used are BBO (beta-barium borate) for Type 
II down-conversion (where the signal and idler photons have perpendicular polarization) and KDP (potassium dihy-
drogen phosphate) for type I down-conversion (where the signal and idler photons have parallel polarization). (b) 
Schematic depiction of a microwave cavity composed from a superconducting metal (orange) and terminated by a 
SQUID with two Josephson junctions (blue) that can sustain electromagnetic standing waves, for instance ωi and ωii, 
which are coupled via the SQUID. (c) Cavity electromechanical system with a microwave resonator of frequency ωi 
consisting of a spiral inductor and a capacitor and a mechanical resonator of frequency ω1 which forms a compliable 
capacitor. Light and sound in these two subsystems are nonlinearly coupled via the oscillating electrical energy 
stored in the capacitor. (d) Phonon-cavity electromechanical system consisting of two localized mechanical vibration 
modes ω1 and ω2 that are coupled via strain. In all three systems, if the respective flux penetrating the SQUID, the 
electric field stored in the capacitor, or the mechanical strain are sinusoidally pumped at the sum frequency of their 
electromagnetic and/or mechanical modes, signal and idler photons and/or phonons are generated that conserve 
energy but the momentum conservation constraint is relaxed due to their stationary wave nature.
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light generated from spontaneous parametric down-
conversion has subsequently engendered a whole 
host of quantum-enabled technologies including 
quantum communication [29], optical quantum com-
puting [30], quantum teleportation [31], quantum 
enhanced measurements and metrology [32, 33].

This unprecedented success has led to two-mode 
squeezed states being translated to other parts of the 
electromagnetic spectrum, for instance microwaves 
utilizing superconducting circuits [34]. Specifically, a 
superconducting resonator terminated with a nonlin-
ear element such as a superconducting quantum inter-
ference device (SQUID), as generically depicted in 
Fig. 1(b), can enable parametric down-conversion 
[35, 36]. Pumping the SQUID with flux in these so-
called Josephson parametric amplifiers (JPAs) yields 
a nonlinear variation in the boundary conditions of 
the microwave resonator which creates a frequency 
modulation in the standing waves it hosts. If the pump 
frequency coincides with the sum of two modes (say 
ωi and ωii as depicted in Fig. 1(b)) in the microwave 
resonator, it non-degenerately amplifies their vacuum 
noise, generating signal and idler photons in a pro-
cess reminiscent to that described above where these 
photons are entangled [37, 38]. Indeed, JPA-like 
devices have now opened the door to many of the 
concepts pioneered with optical two-mode squeezed 
states but in an on-chip microwave circuit that could 
even be yoked into a quantum computer. 

A variation on these microwave circuits has recent-
ly emerged in the form of cavity electromechanical 
systems where the cavity, namely the microwave 
resonator, is composed of an inductor and capacitor 
in series, and the mechanical resonator forms a 
mechanically compliant element of the parallel plate 
capacitor, thus capacitively coupling the mechanics 
to the microwaves as generically depicted in Fig. 1(c) 
[39–41]. Electric fields in the forms of microwaves 
can be pumped into this hybrid circuit via a capaci-
tively coupled transmission line that nonlinearly 
modulates the energy stored in the capacitor and 
hence the frequencies of the mechanics and the cavi-
ty. If the pump coincides with the sum frequency of 
the subsystems (i.e. ωi and ω1 as depicted in Fig. 
1(c)), it behaves like a non-degenerate parametric 
amplifier and it creates photons and phonons in pairs 
that are correlated in a two-mode squeezed state [42, 
43]. This remarkable demonstration illustrates that 
two vastly dissimilar systems, namely light and 
sound, can be entangled in a macroscopic context, 
providing a new regime in which quantum physics 
can be explored [14].

The cavity electromechanical system detailed in 
Fig. 1(c) straddles the two extremes of light and 
sound, and it naturally suggests the possibility of a 
purely mechanical analogue of a two-mode squeezed 
state in a phonon-cavity electromechanical system as 
depicted in Fig. 1(d). As in the microwave case, the 
mechanical resonator can also sustain multiple 
modes, say ω1 and ω2, as shown in Fig. 1(d), which if 
nonlinearly coupled, could yield non-degenerate 
parametric amplification. In contrast to the micro-
wave circuit that needs to be engineered with a non-
linear element, namely the SQUID, to enable the 
modes to couple, the modes in the mechanical reso-
nator can dispersively couple naturally via the strain 
induced from the motion of a given mode that modi-
fies the restoring potential, that is, the spring constant 
and hence, the natural frequency of the other modes 
[44]. Consequently, if the strain in the mechanical 
element is sinusoidally pumped, it will nonlinearly 
modulate the frequencies of all the localized modes, 
and once this modulation coincides with a pair of 
modes, it will non-degenerately amplify their motion 
and in the process generate a two-mode squeezed 
state [45]. Critically, however, an entanglement will 
only be generated if the constituent modes are initial-
ized in their quantum ground state [10–12], but the 
ability to harness this interaction, even if the modes in 
question are thermalized, would lay a pivotal marker 
on the road to generating an all-mechanical macro-
scopic entanglement [46].  

3.   Electromechanical resonator

Although degenerate parametric amplification was 
demonstrated in the early nineties, it could not be 
used to disentangle correlations between the signal 
and idler phonons due to their having identical fre-
quencies and being spatially localized to the same 
mode in the mechanical resonator [47]. Alternatively, 
a non-degenerate variant of this process in the first 
two modes of a beam resonator yielded only a modest 
phonon generation rate, which was insufficient to 
significantly amplify the thermomechanical fluctua-
tions before they were dissipated, resulting in statisti-
cally insignificant correlations [45]. 

To that end, the electromechanical resonator shown 
in Fig. 2(a) was developed, which consists of two 
mechanical elements that are strongly coupled via the 
exaggerated overhangs between them [48]. This 
results in the two lowest-order vibration modes 
shown in Figs. 2(b) and 2(c) that are extracted from a 
finite element calculation and henceforth labeled 
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symmetric (S) and asymmetric (A), which are closely 
spaced in frequency. In addition, the spatial profiles 
of both modes have a large overlap yielding greater 
strain-mediated dispersive coupling between them. 
This combination of enhanced dispersive coupling 
and a smaller frequency separation, almost tending 
towards a degenerate configuration, is designed to 
yield larger non-degenerate parametric amplification 
when the strain in this system is modulated at the sum 
frequency of both modes.

The piezoelectric effect is utilized in order to mod-
ulate the strain in the mechanical modes. By design, 
the electromechanical system is fabricated from gal-
lium arsenide (GaAs), which is piezoelectrically 
active [6, 49]. The piezoelectric transducer is formed 
from a GaAs conducting layer and a gold gate elec-

trode sandwiching an insulating GaAs layer, which is 
integrated directly into the mechanical element, as 
shown in Fig. 2(a). Application of an electric field 
across the transducer generates in-plane strain that 
can nonlinearly modulate the spring constants and 
hence, the frequencies of the modes supported by the 
mechanical system [6].

The Hamiltonian for the electromechanical system 
in this configuration can then be expressed as:

H = 
A

n=S
(P2

n / 2mn + mnw2
nQ

2
n / 2)+ΛQSQA cos(wpt). (1)

Here, P and Q are the canonical momentum and con-
jugate position of the symmetric and asymmetric 
modes with mass m and natural frequency ωn, where 
the summation expresses their kinetic and potential 

Fig. 2.   �(a) Scanning electron micrograph of the electromechanical resonator. Each mechanical element is 80 µm long, 20 
µm wide, 800 nm thick, and is integrated with two piezoelectric transducers formed from a doped GaAs layer located 
300 nm below the surface (blue) and a gold gate electrode (yellow). (b) and (c) The electromechanical resonator 
sustains symmetric (red) and asymmetric (blue) vibration modes composed from both mechanical elements that are 
strongly coupled via the two large overhangs between them. (d) Thermomechanical vibrations of both modes when 
driven by the Langevin force (black) and demodulated in a spectrum analyzer. Activating the non-degenerate para-
metric down-conversion via the piezoelectric transducers on the left mechanical element from 0 to 0.24 Vrms in 0.03 
Vrms increments results in the thermomechanical fluctuations of both modes being amplified. (e) The corresponding 
amplification gain and spectral power bandwidth (∆ω) with pump amplitude increments of 5 mVrms. (f) This experi-
mental response can be faithfully reproduced by numerically solving the Hamiltonian in eq. (1).
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energies. The last term describes the piezoelectrically 
activated non-degenerate parametric down-conver-
sion with amplitude Λ and frequency wp = wS + wA, 
that is, at the sum frequency of the modes in question. 
Ostensibly, this Hamiltonian is classical, which 
superficially suggests the unavailability of two-mode 
squeezing. However, the last term is analogous to 

0 n (ab + a†b†) for non-degenerate parametric 
down-conversion in cavity electromechanical systems 
in the frame rotating at the pump frequency, where a, 
b and a†, b† are the annihilation and creation operators 
for the mechanical and microwave resonators, respec-
tively, and 0 is the intrinsic coupling rate between 
them that is enhanced by n pump photons [41–43]. 
Consequently, Λ encapsulates the intrinsic coupling 
rate between the symmetric and asymmetric modes 
that is enhanced by the piezoelectric pump, which 
results in phonon pairs being simultaneously gener-
ated in them [50]. Remarkably, these phonons should 
still be correlated, even if the two modes are thermal-
ized and far from their quantum ground state, as long 
as their generation rate exceeds the rate at which they 
are dissipated from both modes [46].

4.   Results

4.1   Non-degenerate parametric amplification
To ascertain if this latter expectation is satisfied, the 

thermomechanical fluctuations of both modes are 
spectrally measured via optical interferometry with a 
3-µW helium neon laser probing the right element of 
the electromechanical system at room temperature 
and in a high vacuum [46]. This measurement reveals 
the modes with natural frequencies wS / 2π  ≈ 246 kHz 
and wA / 2π  ≈ 262 kHz with quality factors Qn = wn / 
∆wn of 1300 and 2200, respectively, from their spec-
tral power bandwidth ∆wn, and it corresponds to both 
modes sustaining > 107 phonons. Next non-degener-
ate parametric down-conversion is activated, and the 
thermal fluctuations from both modes are monitored. 
The results of this measurement shown in Fig. 2(d) 
indicate that as the piezoelectric pump voltage is 
increased, the thermomechanical fluctuations of both 
modes are enhanced. This amplification can be refer-
enced to the bare thermal fluctuations, and it yields 
gains of more than 20 dB that are accompanied by a 
narrowing of the power spectral bandwidth from both 
modes, as detailed in Fig. 2(e). At the largest pump 
amplitudes (>0.275 Vrms) ∆wn → 0, resulting in both 
modes undergoing non-degenerate parametric reso-
nance [51, 52].

To confirm these experimental observations, the 

equations of motion for both modes are extracted 
from the Hamiltonian in eq. (1) and reformulated in 
their rotating frames with Qn = Xn cos(wnt) + Yn 
sin(wnt), where Xn and Yn are the slowly varying in-
phase and quadrature components. The resultant 
equations are then numerically solved, as detailed in 
a previous study [46], and they faithfully reproduce 
the experimental response as shown in Fig. 2(f), thus 
verifying that the amplification can be ascribed to 
non-degenerate parametric down-conversion. 

The temporal dynamics of this amplification can 
also be acquired by mixing the output from the opti-
cal interferometer with local oscillators locked onto 
the resonances of both modes and then demodulated 
in a phase sensitive detector (PSD). The PSD samples 
the random displacement fluctuations of the mechan-
ical modes driven by the thermal Langevin force at a 
rate of 50 ms over a period of 300 s. This yields four 
time series for the in-phase and quadrature compo-
nents of both modes, enabling their phase portraits to 
be constructed as shown in Figs. 3(a) and 3(b). This 
measurement reveals that the thermal fluctuations of 
both modes are random and uncorrelated as evi-
denced by their circular distribution in phase space, 
indicating all vibration phases are equally likely (red 
and blue points in Figs. 3(a) and 3(b)). Repeating this 
measurement with a pump amplitude of 0.25 Vrms 
confirms that the fluctuations in both modes are 
enhanced via the non-degenerate parametric down-
conversion while retaining their random nature; 
namely, this amplification is phase insensitive [53]. 

The observed amplification arises from phonons 
generated in both modes from the same process; 
hence, their fluctuations should be correlated. To that 
end, the cross quadratures are constructed in phase 
space from the in-phase component of the symmetric 
mode and the quadrature component of the asymmet-
ric mode and vice versa, as shown in Figs. 3(c) and 
3(d). This unveils squeezed distributions where a par-
ticular phase orientation is amplified while the per-
pendicular phase is de-amplified. The narrowness of 
this distribution implies the existence of correlations 
between the symmetric and asymmetric modes (if no 
correlations between the modes existed, the cross-
quadratures would yield circular and therefore ran-
dom distributions) and is the signature feature of a 
two-mode squeezed state [54, 55]. However, in order 
to quantitatively verify the existence of correlations 
between the modes, two criteria need to be satisfied. 
First, the two-mode squeezed distributions should 
exhibit smaller fluctuations than the bare distribu-
tions; otherwise, the correlations would be washed 
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out by the thermomechanical noise from both modes. 
Second, the correlations should be statistically evi-
dent from the temporal data used to construct the 
phase portraits.

4.2   Squeezing below the thermal noise
The former condition can in fact be visibly con-

firmed by examining the data in Figs. 3(c) and 3(d), 
which indicate that the de-amplified phases encom-
pass a narrower distribution than the bare thermal 
motion from both modes. Quantitatively, new axes x+ 
and y− are introduced, as shown in the inset to Fig. 
3(c), onto which the counts in the squeezed distribu-
tions are projected, as shown in Figs. 4(b) and 4(c) 
[46]. This reveals Gaussian profiles with a zero mean 
displacement, as expected from random fluctuations 

driven by the thermal Langevin force, whose full 
width at half maximum can be used to extract their 
standard deviation σ. This analysis is repeated as a 
function of non-zero pump amplitude for the cross 
quadratures XS: YA and XA: YS, where the standard 
deviations for both the amplified and de-amplified 
phases corresponding to the x+ and y− axes are deter-
mined as shown in Fig. 4(a). Naturally, as the pump 
amplitude is increased, the fluctuations along the x+ 
axis are amplified, while concurrently they are 
reduced along the y− axis where entropy is conserved 
in this process. The gain can then be extracted by 
normalizing with the narrowest standard deviation 
from the bare thermal distribution (corresponding to 
the quadrature component of the asymmetric mode). 
While this slightly overestimates the amplification, it 

Fig. 3.   �(a) and (b) Bare thermal fluctuations of symmetric (red points) and asymmetric (blue points) modes respectively 
acquired temporally on-resonance and projected in phase space via the in-phase (X) and quadrature (Y) axes. 
Activating the non-degenerate parametric down-conversion with a pump amplitude of 0.25 Vrms amplifies the 
fluctuations of both modes while preserving their phase (black points). (c) and (d) The cross quadratures of the 
pumped measurement XS: YA and XA: YS respectively reconstructed in phase space (black points) reveal  two-mode 
squeezed states have been generated that exhibit fluctuations in a particular phase which are below the bare thermal 
fluctuations from both modes (red and blue points), while fluctuations in the orthogonal phase are amplified.
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is consistent with the spectral response detailed in 
Fig. 2(e). However, this normalizing reference under-
estimates the de-amplification, yielding a conserva-
tive 5-dB suppression of the mechanical fluctuations 
below the thermal level where further reduction is 
inhibited by noise from the piezotransducers at large 
pump voltages [46].

To confirm these observations, the thermal Lan-
gevin force, in the equations of motion extracted from 
the Hamiltonian in eq. (1), is decomposed into in-
phase and quadrature components [16, 45, 46]. This 
leads to a new set of composite variables for the 
squeezed distributions given by XS ± YA and XA ± YS 
that naturally correspond to the rotated axes x+ and y− 
introduced in Fig. 3(c) [37, 46]. The pump-induced 
gain in the fluctuations of these composite variables 
can then be extracted from the Langevin correlation 
function, yielding the solid lines in Fig. 4(a). This 
verifies that the noise reduction below the thermal 
level arises from the non-degenerate parametric 
down-conversion. 

4.3   Correlation coefficient
The statistical correlations between the time series 

for the in-phase and quadrature components from 
both modes can be analyzed via the absolute correla-
tion coefficient |cov(ZiZi) /σZiσZi|, where Zi ∈ {XS, YS, 
XA, YA} and the numerator describes the covariance. 
Analyzing the bare thermal fluctuations (shown by 
the red and blue points in Figs. 3(a) and 3(b)) enables 
a correlation coefficient matrix to be constructed, 
yielding 16 permutations. However, only 10 combi-
nations are relevant due to their symmetry, as shown 
in Fig. 5(a). This reveals that the diagonal elements 
corresponding to the auto-correlations of Zi yield a 
coefficient of 1, which indicates that they are per-
fectly correlated with themselves, as one would 
expect. However, all the off-diagonal elements yield 
a coefficient of 0, indicating an absence of correla-
tions; for instance |cov(XSYS) /σXSσYS| ≈ 0, which is 
unsurprising, as this maps the circular distribution in 
Fig. 3(a) corresponding to the random uncorrelated 
fluctuations driven by the thermal Langevin force. 

Fig. 4.   �(a) Standard deviation (σ) of the fluctuation distribution from the two-mode squeezed states in phase space when 
projected onto the rotated axes detailed in Fig. 3(c) as a function of pump amplitude. The amplification along the x+ 
axis is concurrently accompanied with a de-amplification along the y− axis. The red (blue) points correspond to the 
XS: YA (XA: YS) cross-quadrature reconstruction, and the solid black lines denote the ideal theoretical response 
extracted from the Hamiltonian in eq. (1). Also shown is the gain normalized to the narrowest bare thermal distribution 
highlighted by the dashed red line. (b) and (c) The phase portrait from XA: YS with a pump amplitude of 0.2 Vrms 
projected onto the rotated x+ and y− axes reveals Gaussian distributions (points), and the corresponding least 
squares Gaussian fit (line) enables their standard deviation to be extracted as quantified above.
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Repeating this analysis as a function of pump ampli-
tude ranging from 0.1, 0.2, and 0.25 Vrms as shown in 
Figs. 5(b)–(d) indicates that the auto-correlations in 
the diagonal elements remain perfect. However, the 
off-diagonal elements corresponding to the cross-
quadrature phase portraits in Figs. 3(c) and 3(d), 
namely, XS: YA and XA: YS, emerge and converge 
towards 1, which implies that the two modes have 
become perfectly correlated from the simultaneous 
generation of phonon pairs via non-degenerate para-

metric down-conversion.  

5.   Implications and outlook

Although both mechanical modes sustain more than 
10 million phonons at room temperature, the simulta-
neous generation of phonon pairs from the non-
degenerate parametric down-conversion occurs at a 
rate that renders their fluctuations indistinguishable. 
Thus, remarkably, these thermalized macroscopic 

Fig. 5.   �(a)–(d) Correlation coefficient matrix as a function of pump amplitude from 0, 0.1, 0.2, and 0.25 Vrms, respectively. 
The diagonal elements (black) correspond to auto-correlations, which naturally yield a coefficient of 1. The off-diago-
nal elements from XS: YS and XA: YA yield a coefficient of 0, which corresponds to the uncorrelated random fluctua-
tions corresponding to the circular distributions in phase space as shown in Figs. 3(a), 3(b) and are independent of 
the pump amplitude. In contrast, the off-diagonal elements from the two-mode squeezed states XS: YA (red) and XA: 
YS (blue) converge towards a coefficient of 1 as the pump amplitude is increased, implying that the two mechanical 
vibration modes have become perfectly correlated via the simultaneous generation of signal and idler phonons in 
pairs from the non-degenerate parametric down-conversion.
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mechanical vibration modes become perfectly 
entwined in a two-mode squeezed state. Ultimately, if 
the modes can be operated with phonon populations 
of much less than one, then these correlations will 
manifest themselves in a macroscopic all-mechanical 
entanglement [10, 42, 56]. Access to such a state 
would be extremely tantalizing, as it would provide 
an invaluable platform to investigate the absence of 
quantum mechanical phenomena in our everyday 
classical world [20].

From a technological point of view, these results 
herald the emergence of quantum optics to phonon-
ics, and thus, concepts such as quantum cryptography 
and optical quantum computing could potentially be 
harnessed with sound in a microchip. More immedi-
ately, the possibility of even greater squeezing 
becomes available via more strongly coupled modes 
in conjunction with a more efficient piezoelectric 
pump [57]. This enhanced squeezing would not only 
offer detectors that could operate below the quantum 
limit, yielding unprecedented sensitivities for metro-
logical applications [33] and fundamental science 
[58], but it could even be utilized to create room tem-
perature entanglements, thus bringing quantum sound 
into a more technologically accessible regime [59].
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