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1.   Introduction

In recent years, the use of voice-operable smart-
phones and tablets has become widespread, and their 
usefulness has been widely recognized. When a user 
speaks carefully into a terminal, that is, a micro-
phone(s) (Fig. 1(a)), his/her voice is usually accurately 
recognized, and the device works as expected.

On the other hand, there is a growing need for voice 
interfaces that can work when a user speaks at a cer-
tain distance from the microphones. For example, 
when we record the discussion in a meeting, as shown 
in Fig. 1(b), we may want to employ a terminal on the 
table and avoid the use of headset microphones. Fur-
thermore, when users talk to voice-operated robots or 
digital signage, the users would talk to them from a 
certain distance.

However, the current speech recognition accuracy 
of voice-operable devices is generally insufficient 
when the speaker is far away from the microphone. 
This is because of the considerable effect of noise and 
reverberation and because the users speak freely with 
little awareness of the microphones when the micro-

phones are some distance away. We are therefore 
studying distant speech recognition and working on 
speech enhancement and speech recognition tech-
niques to expand the usability of a voice interface in 
real-world sound environments. 

There are two main factors that degrade the auto-
matic speech recognition of distant speech; (�) the 
quality of speech recorded with a distant microphone 
is severely degraded by background noise, for exam-
ple, air conditioners and room reverberation. More-
over, in a multi-person conversation, the speakers’ 
voices sometimes overlap. (2) As the users speak 
freely without regard to the microphones, their utter-
ances become fully spontaneous and therefore tend to 
include ambiguous pronunciations and abbreviations. 
Speech enhancement techniques are essential in order 
to cope with such complex difficulties, and these 
include noise reduction, reverberation reduction (de-
reverberation), speech separation, and spontaneous 
speech recognition techniques. 
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2.   Deep learning in speech processing

We have been studying the aforementioned speech 
processing techniques in order to achieve distant 
speech recognition in the real world. In recent years, 
we have been working on speech processing methods 
based especially on deep learning. Deep learning is a 
machine learning method that uses a deep neural net-
work (DNN), as shown in Fig. 2. Deep learning has 
recently come under the spotlight because in 20�� 
and 20�2 it was shown to outperform conventional 
techniques in many research fields including image 
recognition and compound activity prediction. High 
performance has also been achieved with deep learn-
ing in speech recognition tasks, and therefore, deep 
learning based speech processing techniques have 
been intensively researched in recent years.

In 20��, we began working on deep learning based 

techniques for automatic recognition of spontaneous 
speech [�]. It should be noted that a deep learning 
based real-time speech recognizer developed by NTT 
Media Intelligence Laboratories has already been 
released [2]. We have also proven that deep learning 
improves speech enhancement techniques such as 
noise reduction when deep learning is effectively 
leveraged. The remainder of this article describes our 
speech recognition and speech enhancement tech-
niques that employ deep learning.

3.   Speech recognition with deep learning

General automatic speech recognition techniques 
translate features into phonemes, phonemes into 
words, and words into sentences, by respectively 
using an acoustic model, a pronunciation dictionary, 
and a language model (Fig. 3). Originally, deep 

Fig. 1.   Current and future status of voice interfaces.
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Fig. 2.   Acoustic model with deep neural network (DNN).
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learning based speech recognition employed a DNN 
to achieve accurate acoustic modeling, and it outper-
formed conventional speech recognition techniques 
that do not use deep learning.

The aforementioned acoustic model, pronunciation 
dictionary, and language model are usually trained 
separately, so it has been difficult to consider the 
interaction between the phonetic and linguistic fac-
tors that are present in spontaneous speech. To 
address these complex factors, we proposed synthe-
sizing the three models into a unified model (Fig. �) 
and optimizing it by using a DNN [�]. We demon-
strated that this unified model achieves highly accu-
rate spontaneous speech recognition [�].  

Moreover, we showed that a recurrent neural net-
work (RNN), which is also a deep learning technique, 
in a language model provides further improvement in 
performance. An RNN based language model is 
effective for spontaneous speech recognition because 
its ability to hold the history of words enables us to 
recognize speech by considering a longer context. 
However, it is generally difficult to achieve fast auto-
matic speech recognition while maintaining the com-
plete contextual history. We therefore proposed an 
efficient computational algorithm for maintaining 
contexts and achieved fast and highly accurate auto-
matic speech recognition [�].

The word error rates (WERs) in English lecture 
speech recognition are shown in Fig. 4. Without DNN 
indicates the WER before deep learning was employed. 

The DNN acoustic model shows the large effect of 
deep learning. We can also see that the unified DNN, 
where the unified model is optimized with a DNN, 
outperforms the conventional DNN acoustic model. 
Moreover, the RNN language model achieves the best 
performance, which is more than 4 points better than 
the conventional DNN acoustic model. The appropri-
ate use of deep learning techniques significantly 
improves spontaneous speech recognition perfor-
mance.

4.   Speech enhancement with deep learning

Deep learning also helps to improve speech 
enhancement performance. This section introduces 
two noise reduction techniques: a method for use 
with multiple microphones and a method for use with 
a single microphone. 

The first approach estimates the features of noise-
reduced speech by using a DNN (Fig. 5(a)). Pairs 
consisting of clean and noisy speech signals are used 
to train the DNN to translate noisy speech features 
into clean speech features. The trained DNN is then 
used to estimate noise-reduced features when the 
input consists of noisy features. This method was 
originally used for noise reduction with a single 
microphone, however, its extension to multi-micro-
phone use was not obvious. We found that we can 
improve noise reduction performance by inputting 
additional features estimated with multi-microphone 

Fig. 3.   Speech recognition process.
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observations into a DNN. We also found that the 
probability of speech existing at each time-frequency 
slot, which can be estimated with a microphone array 
technique, provides us with an effective additional 
feature [4]. The results of an evaluation conducted 
under living room noise conditions (PASCAL 
CHiME challenge task) revealed the superiority of 
our proposed approach. Specifically, we obtained a 
reduced WER of 8.8% by using the proposed multi-
microphone features compared to a value of �0.7% 
without them.

The second noise reduction approach is for cases 
where we can use just a single microphone. This 
method is applied to calculate noise reduction filter 
coefficients by using probabilistic models of clean 
speech and noise without speech. Here, accurate 
model estimation is important for accurate filter 
design. We showed that DNN-based clean speech 
model estimation (Fig. 5(b)) achieves high-perfor-
mance noise reduction [5]. Specifically, we con-
structed a clean speech model with a set of probabi-
listic models and utilized a DNN to discriminate the 

Fig. 4.   Word error rates in English lecture speech recognition.
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most suitable model for generating the observed 
noisy speech. With this proposed noise reduction 
approach, we obtained an improved WER of �9.6% 
for a noisy speech database (AURORA4), whereas 
the WER was 2�.0% with a conventional method 
without a DNN. 

It is worth mentioning that we do not use a DNN for 
noise model estimation. This is because it is difficult 
to obtain a sufficient quantity of noise data for DNN 
training due to the wide range of variations and 
momentary fluctuations of noise in the real world. 
With the proposed method, we estimate the noise 
model using an unsupervised method, and we simul-
taneously use a DNN for clean model selection. This 
approach achieves high-performance noise reduction 
in real-world sound environments by flexibly consid-
ering the variation of noisy signals. 

 
5.   Outlook

We believe that distant-talking speech processing is 
a key technology for expanding the usability of voice 
interfaces in actual daily life. In particular, conversa-
tional speech recognition and communication scene 
analysis in real-world sound environments are tech-
niques that meet the needs of the times. These tech-
niques should make a significant contribution to 
artificial intelligence (AI) speech input, which has 
recently attracted renewed interest for applications 
such as minute-taking systems in business meetings, 
intelligent home electronics, and a human-robot dia-
logue system for use in shopping centers. For these 

purposes, we need a highly accurate distant speech 
recognition technique that works in noisy environ-
ments. In addition, techniques for identifying the 
current speakers and for understanding what is going 
on around the AI device by recognizing, for example, 
environmental sound events [6], are also becoming 
more important. We are continuing to work on the 
development of essential techniques for distant-talk-
ing speech processing in order to expand the capa-
bilities of voice interfaces to their fullest extent.
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