
� NTT Technical Review

1. Introduction

OpenStack Swift (hereinafter referred to as either
Swift or OpenStack Swift) [1] is one of the most com-
mon types of open source software (OSS) used to
build very large-scale storage systems with Hypertext
Transfer Protocol (HTTP) based application pro-
gramming interfaces (APIs). OpenStack Swift was
originally released by Rackspace [2], and developers
all over the world have been collaborating on it for
five years with great community effort. OpenStack
Swift is now used in production in various ways. For
example, Rackspace and HP [3] are using OpenStack
Swift for their own public cloud storage services.
Additionally, NTT DOCOMO is using OpenStack
Swift [4] as a 7-petabyte private storage system for its
cloud mail backup system.

Swift’s key features for production use cases have
three main characteristics.
(1)	 HTTP based APIs

Swift supports HTTP based APIs using HTTP
verbs such as PUT, GET, and DELETE for upload-
ing/downloading and deleting data. This way of using
the cloud storage system is an easy way to share data
among cloud systems because developers do not have
to worry about the actual data location, and they can

retrieve their own data whenever they want. Further-
more, the HTTP based APIs are quite useful for han-
dling binary large objects because in recent com-
monly used Internet technologies, clients such as web
browsers and smartphones transfer content via HTTP
on the Internet.
(2)	 High reliability

Swift has the capability to ensure that data are
stored with high reliability and to prevent significant
data loss caused by various events (e.g., disk failure).
To prevent the data loss, Swift has a consistency
engine called an object-replicator that works to find a
lack of data redundancy (three replicas in default) and
consistency. Then it copies valid data if some replicas
are lost or mismatched in the cluster.

Swift also has the capability to store each replica in
as unique a failure domain as possible. For example,
Swift never allows more than one replica to be placed
on the same disk to prevent a failure of one device
resulting in reduced data redundancy. These mecha-
nisms ensure that Swift has high reliability and high
durability.
(3)	 Scale out

An important item to consider when deploying a
large system is scalability. Swift can scale with no
single point of failure. A typical example of a Swift

Regular Articles

Recent Activities Involving
OpenStack Swift
Kota Tsuyuzaki and Masahiro Shiraishi

Abstract
OpenStack Swift is popular open source software used to build very large-scale storage systems.

OpenStack Swift was originally released by Rackspace, and it has been developed with community
effort over the last five years by developers from all over the world. The OpenStack Swift community
recently introduced some major features such as global cluster management and erasure code capability.
NTT has also contributed to the OpenStack Swift community. In addition, NTT developed a proprietary
secret sharing engine called Super High-speed Secret Sharing, which achieves data encryption that is
compatible with erasure code. In this article, we introduce these developments and discuss NTT’s
activities in the Swift community.

Keywords: OpenStack Swift, distributed storage system, object storage

Regular Articles

Vol. 13 No. 12 Dec. 2015 �

cluster configuration is shown in Fig. 1. In this exam-
ple, the system has proxy nodes that receive requests
from clients and storage nodes that actually store
data. This makes for a highly extendible cluster archi-
tecture since proxy nodes can be added if the number
of requests becomes excessive, while storage nodes
can be added if storage capacity becomes insuffi-
cient.

In addition to these characteristics, the Swift com-
munity has been working on building some major
features, and some of them were achieved in recent
releases. In this article, we introduce two of these
features: global cluster management and erasure code
capability. We also describe the secret sharing engine
and how it is used with Swift. This secret sharing

engine makes it possible to store data with encryp-
tion; it was developed by NTT to be compatible with
OpenStack Swift erasure code capability.

2. Global cluster management

Some companies may want to deploy OpenStack
Swift in more than one datacenter to prevent a large
data loss caused by a disaster such as an earthquake,
fire, or tsunami. Our customers must also consider
their requirements for disaster recovery. However,
geographically distributed clusters sometimes have
physical issues with network latency. In the worst
case, the network latency will degrade the input/out-
put performance of the storage system.

The Swift community has been working to improve

Fig. 1. Example of OpenStack Swift cluster configuration.

IT: information technology

Network

Personal
computers

Smartphones,
tablets

(1) File operations by HTTP
(upload, download, deletion, list)

(3) Scale out
(Increases number of proxy/storage nodes)

(2) High reliability
(Saves three copies of data automatically)

Storage nodes

IT
system

Backup
Photos
videos,
images Shared files

Music,
personal data

Load balancer

Proxy nodes

Supports increase in
requests

Supports increase in
capacity

Regular Articles

� NTT Technical Review

the inner architecture in order to reduce the effect of
network latency. This is the feature known as a global
cluster.

Swift employs the concepts of region and affinity to
achieve the global cluster. A region is a domain that
defines which datacenters the actual hard drives
belong to. Affinity is an attribute that defines the pri-
ority among regions seen by the proxy-server.

By defining these two factors, Swift can access
regions that are as local as possible. In an uploading
sequence, Swift will write all of the replicas into
unique devices in the closest region, and the replica-
tor will then copy the replicas asynchronously to
nodes in another region. In a downloading sequence,
Swift will read the object from nodes in the closest
region first. If all nodes are offline in the region, Swift
will try to retrieve the object from another region.

For example, when we define two regions A and B
and define B prior to A by its affinity at the proxy-
server in region B, Swift will try to get the object
from the devices in region B prior to region A, as
shown in Fig. 2. As described in section 1, Swift
stores three copies of replicated data in devices in

domains (regions, zones, Internet protocol addresses,
and devices) that are as unique as possible so that the
global cluster mechanism efficiently retrieves data
from the device in the closest unique domain.

Furthermore, Swift now has the ability to reduce
the number of data transfers among regions by copy-
ing the replica only once between regions. This fea-
ture was developed mainly by NTT with the Swift
community.

3. Erasure code capability

Since the first major release of OpenStack Swift,
Swift has employed the replicated model to protect
stored objects with high availability and durability.
However, nowadays we need a scheme that is more
efficient than the replicated model in order to reduce
the amount of hardware (especially the number of
hard disks) and the associated costs. Erasure code is
a way to reduce the volume of hardware by creating
parity fragments, which refers to smaller amounts of
redundant data than the replicated model. This
scheme uses redundant arrays of inexpensive disks

Fig. 2. Global cluster.

Storage nodes

Region A Region B

Proxy nodes

Wide area network between
datacenters
(Private network, VPN, etc.)

Copies only once
asynchronously
even if region B
requires 2 copies

Affinity: B prior to AAffinity: A prior to B

Able to retrieve from
closer storage nodes

Proxy nodes

Writes whole
copies in local
region first

VPN: virtual private network

Regular Articles

Vol. 13 No. 12 Dec. 2015 �

(RAID).
In an erasure code scheme as shown in Fig. 3, Swift

slices the original data into “ec_k” data fragments
that consist of an aggregation of split original data.
Swift also creates “ec_m” parity fragments, which
are mathematically redundant data of the data frag-
ments. In the erasure code scheme, it is possible to
rebuild the original data from any “ec_k” fragments
among all the fragments.

For example, we use ec_k=2 and ec_m=1 parame-
ters for Swift erasure code; Swift will create two data
fragments and one parity fragment and store a total of
three fragments in three unique devices. When a user
requests Swift to retrieve original data, Swift responds
by rebuilding the original data from any two of the
stored fragments.

For the erasure code feature, the Swift community
added a new consistency engine called object-recon-
structor. It works almost the same as the object-repli-
cator to maintain high durability of data redundancy,
but the difference is that it enables the reconstruction
of a unique fragment (not a copy) for the node.

The major players in the Swift community have
been making an effort to implement this feature for
approximately a year and a half, and it was finally
published as a beta version in the most recent Open-
Stack release. We are hoping that Swift erasure code
will be ready to release as a production-ready version

with the code name Liberty in the next release.

4. Secret sharing

Solutions for security, data durability, and increas-
ing data volume are more important than ever in the
information technology business market, since the
amount of highly confidential information will con-
tinue to grow. To manage confidential data, NTT
developed a proprietary secret sharing engine called
Super High-speed Secret Sharing (SHSS) [5] as a
pluggable backend for the OpenStack Swift erasure
code, and it is expected to be used in secure storage
products as the amount of confidential data increas-
es.

The SHSS engine enables OpenStack Swift to
encrypt fragments and to reconstruct the plain data
from the encrypted fragments (Fig. 4). The recon-
struction requires a number of fragments, and Open-
Stack Swift stores the fragments to unique disks in
the same way as erasure code. This mechanism pre-
vents the system from reconstructing original data
from insufficient fragments, and it reduces the risk of
information leakage when broken physical drives are
replaced by hard drive vendors.

In addition, the main advantage of SHSS is that it
has the world’s fastest fragmentation and reconstruc-
tion performance, which allows OpenStack Swift to

Fig. 3. Example of Swift erasure code for a PUT request.

Storage nodes

Replica Erasure code
(ec_k=2, ec_m=1)

Proxy nodes

Original file

Stores copies of
the file

AAA

BBB

Original file

AAA BBB

Erasure code engine
generates a set consisting
of parts of the original file
and parities.

Erasure code engine

Parity

AAA

BBB

AAA

BBB
AAA

BBB
AAA

BBB

Regular Articles

� NTT Technical Review

quickly store/retrieve files. Previously, secret sharing
processing for fragmentation and reconstruction was
much slower than erasure code’s encoding and
decoding; therefore, it was difficult to apply secret
sharing to storage systems. To improve the perfor-
mance, NTT developed a new high-performance 64-
bit processing technique that is faster than the 8-bit
process used in previous mechanisms. This makes it
possible to increase the processing speed so that
SHSS can fragmentize and reconstruct data at about
20 Gbit/s in the case of 24 total fragments, with 20
fragments used for reconstruction.

5. Future work

For three years, NTT has been working to develop
the Swift features as described in this article. In the
future, we will primarily focus on developing two
new features for Swift.

One is a combination of global cluster and erasure
code. As explained, they both have substantial advan-
tages. However, erasure code cannot currently be

applied for global cluster use cases because the lower
data redundancy (in particular, < two times data
redundancy) leads to the possibility of data loss if a
region goes completely offline. In addition, we
noticed from parity calculation constraints that a
large number of parity fragments (i.e., ec_m) for
increasing data redundancy reduced the PUT/GET
performance in our experiment. To achieve the bene-
fits of both global cluster and erasure code, we are
now attempting to develop a new scheme called
global EC (erasure code) cluster, with the Swift com-
munity.

The other concept we are trying to develop is stor-
age tiering. Automated tiering has recently become a
popular feature in storage system products. It makes
it possible to connect two or more storage tiers
together that are basically different in performance
and cost. With tiering, we can use actual hardware
more efficiently according to the user’s own data
access pattern. Swift currently supports the static
deployment of certain kinds of storage definitions
called storage policies, but we are now researching a

Fig. 4. Swift secret sharing.

Hard disk
vendor

Safe disk
replacement

Files

Storing/Retrieving

Fragmentation/
Reconstruction

Fragment data

Fragment data
Proxy nodes

Storage nodes

SHSS

* SHSS is configured in Swift as the only available erasure code engine that achieves security.

World’s highest-speed
secret sharing
High-speed processing
compatible with
OpenStack Swift
erasure code

OpenStack Swift integration
Security ensured by secret sharing

Fragment data

Regular Articles

Vol. 13 No. 12 Dec. 2015 �

way to dynamically place each object among the stor-
age policies in the Swift cluster to achieve greater
efficiency.

6. Conclusion

Working with Swift software and the Swift com-
munity has improved our software development and
enabled us to focus on which areas we should develop
as part of the OSS community. The Swift production
development cycles and community activities pro-
vide many opportunities for developers to contribute,
and the Swift community has recently finished devel-
oping notable features such as global cluster and
erasure code. We believe that working together with
the OSS community is a great way to improve our
products. To further speed up our research and devel-

opment, we will continue to work closely with the
OSS community.

References

[1]	 Website of OpenStack Swift, Documentation.
	 http://docs.openstack.org/developer/swift/
[2]	 Website of Rackspace, Knowledge Center, Cloud Files: How to arti-

cles & other resources.
	 http://www.rackspace.com/knowledge_center/article/cloud-files-

how-to-articles-other-resources
[3]	 HP, “Maintaining and Operating Swift at Public Cloud Scale,” Open-

Stack Summit, Vancouver, Canada, May 2015.
	 https://www.openstack.org/summit/vancouver-2015/summit-videos/

presentation/maintaining-and-operating-swift-at-public-cloud-scale
[4]	 NTT DATA press release issued on January 15, 2015 (in Japanese).
	 http://www.nttdata.com/jp/ja/news/release/2015/011500.html
[5]	 NTT press release issued on May 18, 2015.
	 http://www.ntt.co.jp/news2015/1505e/150518a.html

Kota Tsuyuzaki
Software Engineer, NTT Software Innovation

Center.
He received an M.E. in information engineer-

ing from Waseda University, Tokyo, in 2010.
Since joining NTT in 2010, he has been engaged
in developing distributed storage systems. He has
been working on OpenStack Swift for approxi-
mately three years and has been a member of the
Swift Core Team since June 2015.

Masahiro Shiraishi
Senior Research Engineer, Supervisor, NTT

Software Innovation Center.
He received an M.E. in mathematics from

Kagoshima University in 1991. He joined NTT
in 1991 and studied and developed operating
system platforms. He is currently studying dis-
tributed storage systems.

http://docs.openstack.org/developer/swift/
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/maintaining-and-operating-swift-at-public-cloud-scale
http://www.nttdata.com/jp/ja/news/release/2015/011500.html
http://www.ntt.co.jp/news2015/1505e/150518a.html
http://www.rackspace.com/knowledge_center/article/cloud-files-how-to-articles-other-resources

