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1.   Introduction

The power consumption in information and com-
munication technology devices has reached a critical 
level with the explosive increase in network traffic. 
The power dissipation in large-scale datacenters is 
estimated to exceed �% of all power consumption. It 
is therefore essential to cut the power consumption of 
both networks and devices. Data transmission within 
datacenters consumes 70% of all network traffic 
handled by datacenters [�]. Optical interconnection, 
in which the electrical data transmission is replaced 
with optical data transmission, has been actively 
developed to reduce datacenter power consumption. 
Vertical cavity surface emitting lasers (VCSELs) 
have already been commercialized as the transmitters 
for intra-rack and inter-board data transmission. Fur-
thermore, optical links for intra-chip data transmis-
sion are also attracting attention because the perfor-
mance of chip-to-chip and intra-chip data transmis-
sion for large-scale integrated circuits is facing the 
limit. 

To introduce optical links into short-reach data 
transmission, it is critical to reduce the power con-
sumption and large-scale integration of optical 
devices, including transmitters and receivers. Wave-
length division multiplexing (WDM) is a promising 
technology to realize large-capacity and low-cost 
optical links. However, the VCSELs currently used in 
optical interconnections are inappropriate for single-
mode transmission and the WDM network. It is thus 
essential to achieve high-density integration of sin-
gle-mode lasers such as distributed feedback (DFB) 
lasers in order to introduce the WDM network into 
short-reach optical interconnections. 

Efforts to achieve high-density integration include 
the development of silicon photonics to realize low-
cost and high-density optical device integration on 
large-diameter silicon wafers [2]. The use of silicon 
photonics is expanding from passive components 
such as optical waveguides and filters to active com-
ponents such as modulators and germanium-based 
photodiodes. In addition, the fusion of optical and 
electronic circuits is promising. Transceivers  
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consisting of silicon optical devices and CMOS 
(complementary metal-oxide-semiconductor) tran-
sistors integrated on silicon wafers have already been 
commercialized. 

Meanwhile, the integration of lasers on silicon 
remains a challenge. Silicon is an indirect transition 
semiconductor; it is not appropriate for light sources 
because of its extremely low emission efficiency. 
Some approaches have been proposed to achieve 
emission of silicon-based materials. These approach-
es include adding impurities, enhancing the emission 
rate by using fine structures, and using germanium-
based lasers. 

However, commercialized lasers have not been 
achieved yet. The standard approach is hybrid inte-
gration of compound semiconductor-based lasers and 
silicon-based optical devices. The commercialized 
transceivers still employ semiconductor lasers as 
extra light sources. There are two ways of achieving 
hybrid integration: laser bonding on silicon optical 
circuits, and laser fabrication on compound semicon-
ductor active regions bonded on silicon waveguides. 
The former approach requires fine alignment between 
the lasers and silicon waveguides with submicron 
order accuracy. This requirement will raise the fabri-

cation cost as the integration density increases.
 In the latter approach, laser waveguides are deter-

mined by the silicon waveguide; therefore, the align-
ment accuracy of bonding processes is eased. How-
ever, it is difficult to achieve compact lasers because 
the optical confinement in the active layer is low; 
most optical power is confined in the silicon wave-
guides. Therefore, it is essential to make progress in 
both the fabrication process and the development of 
the laser structure in order to realize high-density 
integration of lasers with low-power consumption on 
silicon substrates. 

 
2.   Integration of compound semiconductors on 

a silicon substrate

NTT has developed novel techniques to integrate 
semiconductor lasers on silicon. The concept of the 
integration is shown in Fig. 1. First, silicon photonic 
circuits are fabricated on a large-diameter silicon 
dioxide and silicon (SiO2/Si) substrate. Next, mem-
brane compound semiconductor layers are bonded on 
the silicon photonic circuits. We call this bonded 
compound semiconductor layer a template. The 
lasers are fabricated on this template. The lasers can 

Fig. 1.   Concept of laser integration on a silicon wafer and photonics-electronics integration.
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be fabricated by using alignment marks made on a 
silicon substrate. It is easy to achieve fine alignment 
between the silicon waveguides and the lasers. This 
technique will enable high-density integration of all 
optical devices on a large-diameter silicon wafer. 
With further development of the integration of pho-
tonic and electronic circuits, it will be possible to 
achieve compact transceivers on a large-scale silicon 
wafer. 

The process used to fabricate the membrane lasers 
is shown in Fig. 2; it is the same as that described in 
our previous reports [�–4]. An active layer is grown 
on an indium phosphide (InP) substrate to be bonded 
with an SiO2/Si substrate. The InP-substrate is 
removed to form a membrane layer. The buried het-
erostructure (BH) is formed by means of waveguide 
etching and crystal regrowth on the template. The 
lateral current injection structure is formed by selec-
tive impurity doping. Electrodes and Bragg gratings 
are formed on the surface of the laser. This laser fea-
tures high optical confinement in the active region 
thanks to the large difference in the refractive index 
between SiO2 and the thin compound semiconductor 
layers. In addition, the BH provides strong carrier 
confinement in the active region to enhance the car-
rier-photon interaction. This feature contributes to 
reducing the footprint and power consumption of 

lasers [5]. We previously reported the energy cost of 
�7� fJ/bit, which was the smallest value of all DFB 
lasers [6]. These approaches enable the high-density 
integration of silicon optical circuits and high-perfor-
mance lasers on a silicon wafer. 

3.   Membrane lasers on a silicon substrate

We fabricated the lasers using the fabrication pro-
cess described in the previous section [7]. The most 
challenging step is growing the crystal on the bonded 
wafer consisting of silicon, SiO2, and compound 
semiconductors. The environmental temperature var-
ies between room temperature and 600˚C during the 
fabrication process. Meanwhile, the thermal expan-
sion coefficients of the silicon, SiO2, and InP are dif-
ferent. This difference causes thermal stress in the 
epitaxial layer during the fabrication. The stress 
could cause serious defects in the active region, 
which would degrade the lasing characteristics. We 
were able to suppress the effect of thermal stress by 
using a thin InP-based template. The critical thick-
ness of the InP layer was theoretically estimated to be 
4�0 nm to achieve crystal growth under the tempera-
ture variation during the fabrication process. This 
thickness is sufficient to realize optimized membrane 
lasers. We used a 250-nm-thick InP-based template to 

Fig. 2.   Membrane laser fabrication process.
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fabricate the lasers. 
The template is fabricated using a 2-inch-diameter 

thermally oxidized silicon wafer and an InP wafer. 
The active layer, consisting of six InGaAsP (indium 
gallium arsenide phosphide)-based quantum wells, is 
grown on an InP substrate by metal-organic vapor 
phase epitaxy (MOVPE). Covalent bonding assisted 
by O2 plasma is used to bond the epitaxial layer and 
the SiO2/Si wafer. After the bonding process, the BH 
is fabricated by chemical etching and MOVPE 
regrowth. The p-i-n diode structure is formed by Si-
ion implantation for n-doped regions and Zn thermal 
diffusion for p-doped regions. The surface grating is 
patterned on the ��0-nm-thick SiO2 layer above the 
active region waveguide. A cross section of the fabri-
cated BH is shown in Fig. 3(a). The active region was 
successfully buried with the InP layer. No cracks or 
dislocations are observed. The photoluminescence 
spectrum of the fabricated BH on the SiO2/Si layer is 
shown in Fig. 3(b). The emission spectrum of BH 
active layers grown on InP is superimposed. The 
spectra are almost the same; no serious degradation is 
observed after the laser fabrication. These results 
verify that our approach is applicable to laser fabrica-
tion. 

We fabricated the DFB laser by using this active 
layer. The laser cavity is formed by the surface grat-
ing and etching mirrors at the facets. The coupling coef-
ficient of the grating was designed to be �50 cm−�. 
Single-mode lasing with a side mode suppression 
ratio over 40 dB is observed. The current-output 
power characteristics of the fabricated laser with a 
cavity length of �20 μm are plotted in Fig. 4(a). The 

threshold current was �.8 mA. Lasing without kinks 
is observed at temperatures up to �00˚C. An eye dia-
gram of 40-Gbit/s direct modulation is shown in 
Fig. 4(b). The bias current and modulation voltage 
were �5 mA and �.�� V, which corresponds to an 
energy cost of 848 fJ/bit. The modulation efficiency 
was 6.0 GHz/mA0.5. This is the first 40-Gbit/s direct 
modulation of membrane lasers. 

The integration of the lasers and silicon/silica-
based waveguide is a significant step forward toward 
realizing photonic integrated circuits on silicon. A 
distributed reflector (DR) laser integrated with a spot-
size converter (SSC) and a SiOx waveguide [8] is 
shown in Fig. 5(a). The DR laser consists of a front 
DFB section and a rear distributed Bragg reflector 
(DBR) section. The rear DBR mirror suppresses the 
output from the rear section, which can enhance the 
effectiveness. A compact cavity can be achieved by 
employing a DBR with high reflectivity. The BH 
active region has almost the same structure as that of 
the previous DFB laser. The surface grating is pat-
terned on the InP surface above the DFB and DBR 
section. The coupling coefficient is designed to be 
�500 cm−�. The SSC section consists of an InP 
tapered waveguide section covered with the output 
SiOx waveguide and is formed in front of the DR 
laser. The laser beam, strongly confined in the BH 
active region, spreads in the tapered region to convert 
into the propagation mode of the SiOx waveguide. 
The DFB length and the SSC taper length are 50 μm 
and �00 μm, respectively. The measured coupling 
between the laser and optical fiber is 2.7 dB, which is 
almost 6 dB smaller than the coupling between the 

Fig. 3.   (a) Cross section and (b) photoluminescence spectra of BH fabricated on SiO2/Si.
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laser without the SSC and a lensed fiber. The modula-
tion efficiency of the fabricated lasers integrated on 
silicon is plotted in Fig. 5(b). The DFB lasers with 
cavity lengths of 7� μm and �20 μm, and the DR laser 
with a cavity length of 50 μm are compared. The 
modulation efficiency of the DR laser was enhanced 
to 9.4� GHz/mA0.5 thanks to the short cavity. The 
energy cost was also improved to ��2 fJ/bit under the 
modulation speed of 25.8 Gbit/s. 

4.   Summary

We reported the development of semiconductor 
lasers fabricated on a silicon substrate. The crystal 
growth on the bonded wafer makes it possible to 
achieve membrane lasers operating with low power 
consumption comparable to VCSELs. We also suc-
cessfully integrated the laser and the silica-based 
waveguide with high coupling efficiency. Our next 
challenges are to achieve high-density integration of 

Fig. 4.   (a) Current-output characteristics and (b) modulation waveform of membrane laser integrated on silicon.
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the lasers and a larger wafer size. The integration of 
light sources and silicon optical circuits would great-
ly expand the application area of silicon photonics. 
These technologies would pave the way to achieving 
large-scale optical circuits for optical interconnec-
tions. The ultimate target in the future is the integra-
tion of electronics and optical circuits.
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