
1 NTT Technical Review

1.   Introduction

Sensor data and traffic data have recently come to 
be stored in datacenters. Analyzing such data makes 
it possible to predict traffic jams and network conges-
tion. These data are generated with high frequency, 
and the amount becomes increasingly larger as time 
goes on. This means that data cannot be managed in 
a general relational database because a relational 
database constructs a rigorous data structure and sac-
rifices the scalability of data management.

A key-value store (KVS)*1 is a simple data storage 
architecture widely used to manage large amounts of 
data because it stores only simple key-value pairs 
(Fig. 1). MapReduce*2 is a well-known distributed 
data analysis scheme that has good scalability for 
analyzing large data sets in parallel, and it is easily 
built and deployed on KVS [1]. If all data are distrib-
uted fully into KVS, MapReduce quickly achieves 
parallel data analysis. The performance of MapRe-
duce can be guaranteed in simple cases of data analy-
sis; however, it is difficult to apply it for complex 
analysis such as time series data analysis and distrib-
uted machine learning. The specific difficulties are as 
follows. 
(1)	� Currently, the nodes’ states are managed in a 

centralized server in a general MapReduce plat-
form such as Hadoop [2]. Therefore, the load on 
the centralized server may exceed capacity as 

the number of analysis executions increases.
(2)	� The ideal parallel performance of MapReduce is 

guaranteed in that all data sets are fully distrib-
uted in KVS. However, time series data may be 
non-uniformly distributed in KVS. For example, 
if a large amount of data is concentrated on cer-
tain servers, the performance of MapReduce 
analysis will be degraded.

(3)	� In machine learning analysis using MapReduce, 
there is frequent data communication among all 
nodes (i.e., the shuffle phase), and this causes 
heavy traffic and network congestion.

We have been researching a MapReduce architec-
ture to solve these problems. In this article, we intro-
duce an efficient MapReduce architecture based on 
distributed skiplist tree (DST) [3].

2.   MapReduce scheme based on DST

DST is a hybrid data structure consisting of both a 
balanced tree and a linked list such as a skiplist, 
which takes only O(log N) operations to search/put/
remove data. To construct a DST in a distributed envi-
ronment, each node has two values: the location  
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identification (ID) and the level. The location ID is 
the circulated hashed ID, which is used to determine 
the ID space region of a node. The level refers to the 
hierarchy level in the DST, which is determined by 
the function of [-logK RAND], where K and RAND 
are denoted as the balancing factor and the random 
value among [0,1], respectively. Using this function 
to determine the hierarchy level, we obtain the prob-

ability (1/K)l of a node being located at level l. All 
nodes in the hierarchy of the node at level 1 must be 
placed below level 1, and that node connects all nodes 
between the node location ID and its neighbor at level 
l. In this way, all of the connections form a DST 
(Fig. 2). The DST achieves a balanced tree without 
balancing operations; therefore, the maintenance cost 
of a balanced tree is very low. 

Fig. 2.   Topology and management of DST.

Level Suc Pre

Level Suc Pre

Level: 2
(root level)

Level: 1

Level: 0

Routing table

2

1

0

1

0

0

0

0

6

6

9

8

8

7

1

5

3

2

4

2

4

4

3

0

1

null

2

1

null

8

9

Parent: null
Children: 1, 2, 4, 6, 8

Location ID

Parent: 0
Children: 3

Suc: Closest clockwise node
Pre: Closest counter-clockwise node

Routing table

Fig. 1.   Data management in KVS.
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Next, we describe the DST construction procedure 
consisting of node join/leave operations. When node 
P (location ID p and level l) joins the DST, it requests 
an existing node to search its own location in level l. 
The node receiving the request checks whether loca-
tion ID p is between its own ID and its neighbor’s ID 
in level l. When the location ID p is not in the ID 
region, the receiving node forwards the request to its 
own parent node. In contrast, when the location ID p 
is in the ID region, the receiving node forwards the 
request to the child nodes closest to location ID p. In 
repeating the request forwarding, the request arrives 
at the node containing p in its own location ID region. 
Then, that node divides its own ID region into two ID 
regions for itself and for node p, and becomes the 
neighbor of node P. The summarized procedure for a 
node to join the DST is that a neighbor search opera-
tion using O(log N) request forwarding is carried out 
(Fig. 3). 

When a node leaves the DST, the node does not 
inform the other nodes of its leaving. Therefore, the 
nodes must monitor each other using a heartbeat*3 

protocol in order to handle the situation when nodes 
leave. The heartbeat protocol involves simple syn-
chronize/acknowledge (SYN/ACK) communications 
among nodes. The protocol sends a SYN message to 
a node and checks whether a corresponding ACK 
reply is received. In DST, each node checks child 

node states using the heartbeat protocol. If a parent 
node detects that a child node has left, the parent node 
searches for the node neighbor and replaces the leav-
ing node. If the parent node recognizes the neighbor 
node, the leave is fixed by a few network communica-
tions. In the worst case, the parent node must search 
for the neighbor node from the entire DST. However, 
it takes only O(log N) message forwarding by using 
the search protocol introduced in the node join proce-
dure. The cost of these node join/leave operations is 
only O(log N) message forwarding; therefore, DST 
achieves scalable/distributed node management and 
solves problem (1) mentioned in section 1.

Next, we introduce the load balancing function in 
DST. A root node located at the highest level periodi-
cally requests load information (e.g., the number of 
receiving queries per hour) from its child nodes, and 
the receiving nodes forward the requests to their child 
nodes recursively. When the request arrives at the 
nodes in level 0, the nodes send information about 
their own load to the parent node. The parent node 
sorts the information in descending order of load and 
forwards the top and bottom A load information to its 
own parent node. Through recursive execution of this 
process, the root node obtains the top and bottom A 

Fig. 3.   Node join process in DST.
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*3	 Heartbeat: A protocol to confirm the server state (i.e., dead or 
alive) through keep-alive messaging.
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load information from the DST and balances the 
popular data among the 2A nodes. This process is 
repeated periodically, and the DST is able to balance 
the entire load step-by-step, solving problem (2) 
mentioned in section 1.

Finally, we introduce a traffic reduction scheme 
generated by the MapReduce process in the DST. All 
data in the MapReduce process are delivered to their 
destination nodes through the DST. Then, each parent 
node combines the delivered data destined for the 
same nodes and redelivers them. The efficiency of 
this traffic reduction scheme depends on the charac-
teristics of the time series data, but it is expected to 
achieve a significant reduction in traffic compared 
with naive delivery and to solve problem (3) men-
tioned in section 1.

3.   Evaluation

We evaluated the performance of DST through 
computer emulation. In this emulation, there were 
1000 nodes, and each node had [0, 10,000] time 
series data with a time range of [00:00, 23:59]. For 
comparison, we also evaluated the MapReduce plat-
form based on Microsoft Azure [4]. 

First, we evaluated the effectiveness of load balanc-
ing. In the evaluation, we set variable A as 10 or 100 
and measured the standard deviation of the amount of 
data among nodes while changing the number of load 

information requests (Fig. 4). We observed from the 
results that the effectiveness of load balancing in DST 
was higher as A became larger even if the number of 
requests was small. 

Next, we evaluated the amount of data transported 
in the MapReduce process when the target time range 
was changed. The results indicated that DST effec-
tively reduced the amount of transported data as the 
target range was expanded (Fig. 5). 

Finally, we evaluated the stability of DST in a churn 
environment, which is where some nodes frequently 
join/leave the DST and also replicate data to other 
nodes more frequently. The frequencies of joining/
leaving were set at 0.5, 1, and 2 per second, and each 
node replicates data it holds in one to three of its clos-
est neighbors. In this environment, each node repeat-
edly sends certain kinds of data to the other node/s at 
an interval of 0.2 s. We measured the average success 
rate of the data transportation (Fig. 6). The results 
indicated that the success rate is significantly 
improved as the number of replicas increases.

4.   Summary and future work

In this article, we introduced the DST and evaluated 
its effectiveness through emulation. The next step is 
to discuss the DST architecture with skiplist experts 
and work on making it even more effective. In  
addition, we will verify the effectiveness of DST 

Fig. 4.   Number of load information requests vs. standard deviation of the amount of data.
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when it is used to analyze real traffic data.

References

[1]	 J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing 
on Large Clusters,” Communications of the ACM, Vol. 51, No. 1, pp. 

107–113, 2008.
[2]	 Website of Apache Hadoop, https://hadoop.apache.org
[3]	 K. Mizutani, T. Mano, O. Akashi, and K. Fukuda, “A Design of Scal-

able Computing Platform for Continuous Data,” Computer Software, 
Vol. 30, No. 2, pp. 101–118, 2013.

[4]	 Website of Microsoft Azure, https://azure.microsoft.com/en-
us/?b=16.01

Fig. 5.   Time range vs. amount of data transported in MapReduce.
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Fig. 6.   Success rate of data transportation vs. the number of data replicas.
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