
1 NTT Technical Review

1. Introduction

Sensor data and traffic data have recently come to
be stored in datacenters. Analyzing such data makes
it possible to predict traffic jams and network conges-
tion. These data are generated with high frequency,
and the amount becomes increasingly larger as time
goes on. This means that data cannot be managed in
a general relational database because a relational
database constructs a rigorous data structure and sac-
rifices the scalability of data management.

A key-value store (KVS)*1 is a simple data storage
architecture widely used to manage large amounts of
data because it stores only simple key-value pairs
(Fig. 1). MapReduce*2 is a well-known distributed
data analysis scheme that has good scalability for
analyzing large data sets in parallel, and it is easily
built and deployed on KVS [1]. If all data are distrib-
uted fully into KVS, MapReduce quickly achieves
parallel data analysis. The performance of MapRe-
duce can be guaranteed in simple cases of data analy-
sis; however, it is difficult to apply it for complex
analysis such as time series data analysis and distrib-
uted machine learning. The specific difficulties are as
follows.
(1)	� Currently, the nodes’ states are managed in a

centralized server in a general MapReduce plat-
form such as Hadoop [2]. Therefore, the load on
the centralized server may exceed capacity as

the number of analysis executions increases.
(2)	� The ideal parallel performance of MapReduce is

guaranteed in that all data sets are fully distrib-
uted in KVS. However, time series data may be
non-uniformly distributed in KVS. For example,
if a large amount of data is concentrated on cer-
tain servers, the performance of MapReduce
analysis will be degraded.

(3)	� In machine learning analysis using MapReduce,
there is frequent data communication among all
nodes (i.e., the shuffle phase), and this causes
heavy traffic and network congestion.

We have been researching a MapReduce architec-
ture to solve these problems. In this article, we intro-
duce an efficient MapReduce architecture based on
distributed skiplist tree (DST) [3].

2. MapReduce scheme based on DST

DST is a hybrid data structure consisting of both a
balanced tree and a linked list such as a skiplist,
which takes only O(log N) operations to search/put/
remove data. To construct a DST in a distributed envi-
ronment, each node has two values: the location

Distributed Time Series Data
Management and Analysis
Kimihiro Mizutani, Takeru Inoue, Toru Mano,
Hisashi Nagata, and Osamu Akashi

Abstract
At NTT Network Innovation Laboratories, we are studying sophisticated network management

schemes based on network data analysis. In this article, we focus on a distributed data analysis scheme
for large amounts of network data. With this scheme, the amount of network data transported among
datacenters for analysis can be reduced, which will also reduce costs.

Keywords: distributed database, distributed data analysis, skiplist

Feature Articles: New Generation Network Platform
and Attractive Network Services

*1	 Key-value store (KVS): A database storing pairs of data and their
key (e.g., <key, data>).

*2	 MapReduce: A parallel programming model for analyzing large
data sets.

Vol. 14 No. 3 Mar. 2016 2

Feature Articles

identification (ID) and the level. The location ID is
the circulated hashed ID, which is used to determine
the ID space region of a node. The level refers to the
hierarchy level in the DST, which is determined by
the function of [-logK RAND], where K and RAND
are denoted as the balancing factor and the random
value among [0,1], respectively. Using this function
to determine the hierarchy level, we obtain the prob-

ability (1/K)l of a node being located at level l. All
nodes in the hierarchy of the node at level 1 must be
placed below level 1, and that node connects all nodes
between the node location ID and its neighbor at level
l. In this way, all of the connections form a DST
(Fig. 2). The DST achieves a balanced tree without
balancing operations; therefore, the maintenance cost
of a balanced tree is very low.

Fig. 2. Topology and management of DST.

Level Suc Pre

Level Suc Pre

Level: 2
(root level)

Level: 1

Level: 0

Routing table

2

1

0

1

0

0

0

0

6

6

9

8

8

7

1

5

3

2

4

2

4

4

3

0

1

null

2

1

null

8

9

Parent: null
Children: 1, 2, 4, 6, 8

Location ID

Parent: 0
Children: 3

Suc: Closest clockwise node
Pre: Closest counter-clockwise node

Routing table

Fig. 1. Data management in KVS.

 ID Region

Traffic data of 7:32

Put into storage
server 8.

Storage server 00

1
0

2 0

1

2

3

4

5

6

7

8

9

9:01–0:00

0:01–1:00

1:01–2:00

2:01–3:00

3:01–4:00

4:01–5:00

5:01–6:00

6:01–7:00

7:01–8:00

8:01–9:00

3

4

5

6

7

8

9

3 NTT Technical Review

Feature Articles

Next, we describe the DST construction procedure
consisting of node join/leave operations. When node
P (location ID p and level l) joins the DST, it requests
an existing node to search its own location in level l.
The node receiving the request checks whether loca-
tion ID p is between its own ID and its neighbor’s ID
in level l. When the location ID p is not in the ID
region, the receiving node forwards the request to its
own parent node. In contrast, when the location ID p
is in the ID region, the receiving node forwards the
request to the child nodes closest to location ID p. In
repeating the request forwarding, the request arrives
at the node containing p in its own location ID region.
Then, that node divides its own ID region into two ID
regions for itself and for node p, and becomes the
neighbor of node P. The summarized procedure for a
node to join the DST is that a neighbor search opera-
tion using O(log N) request forwarding is carried out
(Fig. 3).

When a node leaves the DST, the node does not
inform the other nodes of its leaving. Therefore, the
nodes must monitor each other using a heartbeat*3

protocol in order to handle the situation when nodes
leave. The heartbeat protocol involves simple syn-
chronize/acknowledge (SYN/ACK) communications
among nodes. The protocol sends a SYN message to
a node and checks whether a corresponding ACK
reply is received. In DST, each node checks child

node states using the heartbeat protocol. If a parent
node detects that a child node has left, the parent node
searches for the node neighbor and replaces the leav-
ing node. If the parent node recognizes the neighbor
node, the leave is fixed by a few network communica-
tions. In the worst case, the parent node must search
for the neighbor node from the entire DST. However,
it takes only O(log N) message forwarding by using
the search protocol introduced in the node join proce-
dure. The cost of these node join/leave operations is
only O(log N) message forwarding; therefore, DST
achieves scalable/distributed node management and
solves problem (1) mentioned in section 1.

Next, we introduce the load balancing function in
DST. A root node located at the highest level periodi-
cally requests load information (e.g., the number of
receiving queries per hour) from its child nodes, and
the receiving nodes forward the requests to their child
nodes recursively. When the request arrives at the
nodes in level 0, the nodes send information about
their own load to the parent node. The parent node
sorts the information in descending order of load and
forwards the top and bottom A load information to its
own parent node. Through recursive execution of this
process, the root node obtains the top and bottom A

Fig. 3. Node join process in DST.

Node (location ID: 9) joins the DST. 9

3
4

2

4

20

0

0 1

56
7

8

8

6

Level: 2
(root level)

Level: 1

Level: 0

Route of location search request

*3	 Heartbeat: A protocol to confirm the server state (i.e., dead or
alive) through keep-alive messaging.

Vol. 14 No. 3 Mar. 2016 4

Feature Articles

load information from the DST and balances the
popular data among the 2A nodes. This process is
repeated periodically, and the DST is able to balance
the entire load step-by-step, solving problem (2)
mentioned in section 1.

Finally, we introduce a traffic reduction scheme
generated by the MapReduce process in the DST. All
data in the MapReduce process are delivered to their
destination nodes through the DST. Then, each parent
node combines the delivered data destined for the
same nodes and redelivers them. The efficiency of
this traffic reduction scheme depends on the charac-
teristics of the time series data, but it is expected to
achieve a significant reduction in traffic compared
with naive delivery and to solve problem (3) men-
tioned in section 1.

3. Evaluation

We evaluated the performance of DST through
computer emulation. In this emulation, there were
1000 nodes, and each node had [0, 10,000] time
series data with a time range of [00:00, 23:59]. For
comparison, we also evaluated the MapReduce plat-
form based on Microsoft Azure [4].

First, we evaluated the effectiveness of load balanc-
ing. In the evaluation, we set variable A as 10 or 100
and measured the standard deviation of the amount of
data among nodes while changing the number of load

information requests (Fig. 4). We observed from the
results that the effectiveness of load balancing in DST
was higher as A became larger even if the number of
requests was small.

Next, we evaluated the amount of data transported
in the MapReduce process when the target time range
was changed. The results indicated that DST effec-
tively reduced the amount of transported data as the
target range was expanded (Fig. 5).

Finally, we evaluated the stability of DST in a churn
environment, which is where some nodes frequently
join/leave the DST and also replicate data to other
nodes more frequently. The frequencies of joining/
leaving were set at 0.5, 1, and 2 per second, and each
node replicates data it holds in one to three of its clos-
est neighbors. In this environment, each node repeat-
edly sends certain kinds of data to the other node/s at
an interval of 0.2 s. We measured the average success
rate of the data transportation (Fig. 6). The results
indicated that the success rate is significantly
improved as the number of replicas increases.

4. Summary and future work

In this article, we introduced the DST and evaluated
its effectiveness through emulation. The next step is
to discuss the DST architecture with skiplist experts
and work on making it even more effective. In
addition, we will verify the effectiveness of DST

Fig. 4. Number of load information requests vs. standard deviation of the amount of data.

Conventional
3500

3000

2500

2000

1500

1000

500

0

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

e
am

ou
nt

 o
f d

at
a

DST (A = 10)

0 1 2 3 4 5 6 7 8 9 10

DST (A = 100)

Number of load information requests

5 NTT Technical Review

Feature Articles

when it is used to analyze real traffic data.

References

[1]	 J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, Vol. 51, No. 1, pp.

107–113, 2008.
[2]	 Website of Apache Hadoop, https://hadoop.apache.org
[3]	 K. Mizutani, T. Mano, O. Akashi, and K. Fukuda, “A Design of Scal-

able Computing Platform for Continuous Data,” Computer Software,
Vol. 30, No. 2, pp. 101–118, 2013.

[4]	 Website of Microsoft Azure, https://azure.microsoft.com/en-
us/?b=16.01

Fig. 5. Time range vs. amount of data transported in MapReduce.

Time range

Conventional

A
m

ou
nt

 o
f t

ra
ns

po
rt

ed
 d

at
a

108

109

107

106

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

DST

Fig. 6. Success rate of data transportation vs. the number of data replicas.

2 nodes/s
1 node/s
0.5 nodes/s

100

80

60

40

20

0
1 2 3

Number of data replicas

S
uc

ce
ss

 r
at

e
of

 d
at

a
tr

an
sp

or
ta

tio
n

(%
)

Vol. 14 No. 3 Mar. 2016 6

Feature Articles

Kimihiro Mizutani
Researcher, NTT Network Innovation Labora-

tories.
He received an M.S. and Ph.D. from Nara

Institute of Science and Technology in 2010 and
2015. His research interests include future net-
work architectures. He received the best student
paper award from the International Conference
on Communication Systems and Applications
(ICCSA) in 2010. He also received research
awards from the Information Processing Society
of Japan (IPSJ) and the Institute of Electronics,
Information and Communication Engineers
(IEICE) in 2010 and 2013, respectively. He is a
member of IEICE and the Institute of Electrical
and Electronics Engineers (IEEE) Communica-
tions Society.

Takeru Inoue
Senior Researcher, NTT Network Innovation

Laboratories.
He received a B.E., M.E., and Ph.D. from

Kyoto University in 1998, 2000, and 2006. He
was an ERATO researcher at the Japan Science
and Technology Agency from 2011 through
2013. His research interests widely cover the
design and control of network systems. He
received the best paper award from the Asia-
Pacific Conference on Communications in 2005
and research awards from the IEICE Information
Network Group in 2002, 2005, and 2012. He is a
member of IEEE.

Toru Mano
Researcher, NTT Network Innovation Labora-

tories.
He received a B.E. and M.E in information

science and technology from the University of
Tokyo in 2009 and 2011. His research interests
are network architectures and network optimiza-
tion.

Hisashi Nagata
Researcher, NTT Network Innovation Labora-

tories.
He received an M.S. in particle physics from

Osaka University in 2013. His recent research
involves network computing and verification
techniques.

Osamu Akashi
Senior Researcher, NTT Network Innovation

Laboratories.
He received an M.S. in information science and

a Ph.D. in mathematical and computing sciences
from Tokyo Institute of Technology in 1989 and
2001. He joined NTT in 1989. His research inter-
ests include distributed systems, multi-agent
systems, and network architectures.

