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1.   Introduction

Expectations for communication networks have 
been increasing more and more in recent years. The 
development of the Internet of Things (IoT) is one 
example of such an expectation. The IoT is expected 
to make people’s lives richer by connecting and con-
trolling all things via networks. The fifth-generation 
(5G) mobile access network, which smoothly bridges 
numerous users/things and core networks in the IoT 
world, is also attracting attention. It is an optical 
transport network whose device technology supports 
the realization of IoT from the viewpoint of long-haul 
data transmission.

The capacity of the optical network has been 
expanding for over 30 years, which has enriched 
people’s communication environment (Fig. 1). From 
the 1980s to the early 1990s, time-division multiplex-
ing (TDM) techniques were developed to reduce the 
cost of communication lines and to realize integrated 
services digital networks (ISDNs). With TDM tech-
niques, the capacity of the optical transport network 

reached 10 Gbit/s per optical fiber. From the late 
1990s through the 2000s, progress was made in 
wavelength-division multiplexing (WDM) tech-
niques in order to cope with the rapid growth in Inter-
net traffic. WDM techniques finally reached a capac-
ity of 1 Tbit/s per fiber. Digital coherent technology 
has been applied since the 2010s, which has boosted 
the capacity to manage drastic increases in traffic 
caused by the widespread use of smartphones. At 
present, 8 Tbit/s per fiber capacity has already been 
realized and utilized in real systems. 

Digital coherent technology is very different from 
conventional TDM and WDM techniques in terms of 
the light modulation scheme for carrying digital data. 
While conventional TDM and WDM techniques use 
only optical intensity for light modulation, digital 
coherent technologies modulate not only optical 
intensity but also the optical phase. Moreover, digital 
coherent devices can multiplex light polarization, 
whereas TDM and WDM devices cannot. 

Because light parameters for carrying digital data 
are increased in digital coherent technology, the 
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capacity per one wavelength of light has reached 100 
Gbit/s at present. (When WDM techniques were the 
prevailing technology, a few dozen wavelength sig-
nals were multiplexed in one optical fiber. At the end 
of the WDM era, 40-Gbit/s capacity per wavelength 
had been achieved due to steady progress in TDM 
techniques.) As mentioned so far, digital coherent 
technology adopts a more complex light modulation 
and multiplexing scheme than those of conventional 
TDM and WDM techniques, and it is the optoelec-
tronic devices that physically realize the complex 
digital coherent technology. Communication traffic 
in the world of IoT with 5G mobile access is expected 
to continue to increase, so an optical transport net-
work beyond 100 Gbit/s per wavelength (hereafter, 
100 Gbit/s/λ; λ (lambda) = wavelength), referred to 
as a beyond 100G optical transport network is highly 
desirable by people all over the world.

2.   Requirements for beyond 100G optical 
transport network and development strategy for 

associated devices

Three requirements for the beyond 100G optical 

transport network and the strategy of developing the 
optoelectronic devices used with it are summarized in 
Table 1. NTT laboratories established the develop-
ment strategy in order to meet the requirements, and 
development of the optoelectronic devices is under-
way to achieve the beyond 100G optical transport 
network. The details of the development strategy are 
described below.

2.1   Expanded capacity
Communication traffic will continue to increase in 

the next generation, and it will be vital to expand the 
capacity in order to meet the increase. In particular, it 
is important to find a way to transport mobile traffic 
long distances at reasonable cost as soon as possible. 
Mobile traffic is currently growing at 1.4 times the 
current amount per year. Although 8-Tbit/s total 
capacity optical transport systems with 100 Gbit/s/λ 
were installed in 2013, 30-Tbit/s-class systems with 
400 Gbit/s/λ are expected to be necessary by 2017 to 
support the growing mobile traffic. Optoelectronic 
devices used for such optical transport systems 
should be ready one year ahead of the time they are 
needed; therefore, research and development (R&D) 

Fig. 1.   Transition of optical transport network and device technologies.
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of optoelectronic devices must be done quickly and 
efficiently.

NTT laboratories have been focusing on digital 
coherent technology as a way to expand the capacity 
of the optical transport network. R&D is underway on 
more sophisticated modulation schemes such as 
16-level quadrature amplitude modulation (16QAM), 
as well as conventional optical modulation schemes 
such as quadrature phase-shift keying (QPSK). We 
are also working to increase the speed of modulation 
(baud rate). By combining a more sophisticated 
modulation scheme and a faster baud rate, we will be 
able to achieve a much larger capacity of the optical 
transport network in the near future. One concrete 
example of this is that NTT laboratories are trying to 
implement a more sophisticated modulation scheme 
and a faster baud rate into a digital signal processor 
(DSP), which is the heart of the optical transport net-
work utilizing digital coherent technology. As for the 
optical transmitter and receiver, we are focusing 
especially on the coexistence of highly linear input-
output characteristics and faster performance, which 
are essential for implementing a more sophisticated 
modulation scheme and faster baud rate.

2.2   Downsizing of optical transport equipment
The volume of optical transport equipment affects 

the size of the facility of the communication carrier 
company, so compact assembly/packaging is essen-
tial. If the communication traffic is increased several 
times with the new equipment, the volume of the 
equipment will need to be equal in size or smaller 
than the previous equipment. In recent years, not only 
have the facilities of communication carrier compa-
nies been directly connected to the optical transport 

network in order to deliver information long distanc-
es, but so too have datacenters run by information 
technology companies. The allotted space for equip-
ment in datacenters is very limited, so compact 
assembly/packaging is mandatory when installing 
optoelectronic devices in datacenters. 

Two aspects in the R&D of optoelectronic devices 
that are important in order to achieve compact assem-
bly/packaging are: 1) making each device smaller, 
and 2) reducing power consumption to prevent the 
inevitable problem of heat radiation in smaller size 
devices. For example, although a 100-Gbit/s/λ digital 
coherent optical transceiver (commercialized in 
2013) has a footprint of 5 inches × 7 inches (12.70 cm 
× 17.78 cm), a 1.6 inch × 4.2 inch CFP2-ACO (cen-
tum (100) gigabit form-factor pluggable 2 - analogue 
coherent optics, 4.06 cm × 10.67 cm) optical trans-
ceiver has been developed and is being commercial-
ized in 2016. From now on, making devices smaller 
and reducing power consumption will remain impor-
tant tasks, and progress in these areas will continue 
rapidly.

To make devices smaller, NTT laboratories choose 
appropriate materials for optoelectronic devices and 
optimize the device design. Selecting high refractive 
index materials such as indium phosphide (InP) and 
silicon (Si) helps in reducing the sizes of optoelec-
tronic devices, but we are also focusing on optimizing 
the device design so as not to degrade the optical 
transport performance. Also, to reduce power con-
sumption, NTT laboratories have been researching 
and developing ways to reduce the driving voltage of 
optical modulators. Optical modulators using InP are 
a representative example of such development, and 
the details are described in the other Feature Articles 

Table 1.   Optical transport network requirements and device development strategy.

CMOS: complementary metal-oxide semiconductor
EO/OE: electrical-optical/optical-electrical
InP: indium phosphide

QAM: quadrature amplitude modulation
QPSK: quadrature phase-shift keying
Si: silicon

Requirements
for optical
transport
network 

Expanded capacity Downsizing of optical
transport equipment Low latency 

Device
development

strategy

•  Multi-level coherence (xQAM) 
•  Faster modulation 

(higher baud rate)

•  Choosing appropriate materials for 
devices and optimizing device design 

•  Expansion of domain of optical 
technologies 
(ultralong-haul optical transmission, 
optical switches w/o EO/OE conversion)  

Concrete 
development

activities 

•  DSP implementing QPSK and 
16QAM

•  Optical transmitter and receiver 
corresponding to QPSK and 16QAM 

•  Optical modulator and receiver using 
InP and Si

•  DSP using state-of-the-art miniaturized 
CMOS process (20 nm, 16 nm) 

•  DSP equipped with soft-decision 
forward error correction (SD-FEC) 
and frequency domain equalization 
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in this issue. As for DSP, the use of a state-of-the-art 
complementary metal-oxide semiconductor (CMOS) 
miniaturized process made it possible to achieve a 
drastic reduction in power consumption. While 
40-nm and 20-nm CMOS miniaturized processes 
were used in developing the DSP, a 16-nm process—
the first in the world—is being used in the most recent 
development to further reduce power consumption.

2.3   Low latency
In the near future, many applications using the 

communication network will be introduced. These 
applications include those for services that require 
real-time responses and that have low latency. Exam-
ples for such services include highly sophisticated 
financial services and smart cars connected to the 
communication network. 

The total latency of network services mainly 
depends on the configuration of servers and the archi-
tecture of the network. However, in terms of the opti-
cal physical layer, reducing the latency inside the 
optical transport equipment is effective in reducing 
the overall latency. The most effective way to reduce 
latency is to reduce the number of times data packets 
are stored and forward-processed after optical-to-
electrical (OE) conversion, or in other words, to 
reduce the number of core routers. Moreover, if OE 
and electrical-to-optical (EO) conversions were 
excluded as well as the decreased number of core 
routers, much lower latency would be obtained. 

These technical trends require expanding the domain 
of optical technologies, for example, extending the 
transmission distance of optical signals without OE/
EO conversion relay and routing optical signals with-
out the OE/EO process. 

To contribute to the low latency of the communica-
tion network using optical technologies, NTT labora-
tories have been researching ways to extend the reach 
of optical signals in the optical transport network and 
investigating switching techniques that do not require 
OE/EO conversions. The following Feature Articles 
introduce NTT’s development of a DSP implement-
ing soft-decision forward error correction (SD-FEC) 
and frequency domain equalization to extend the 
optical transmission distance.

3.   Future overview

The final goal of NTT laboratories, especially NTT 
Network Innovation Laboratories and NTT Device 
Innovation Center, is the widespread use of the 
beyond 100G optical transport network. To achieve 
this goal, we are continuing our R&D on state-of-the-
art technologies and fabrication of easy-to-use devic-
es in a timely manner based on the development 
strategy described earlier. The Feature Articles in this 
issue introduce the following devices, which have 
been developed according to this strategy (Fig. 2).
(1)  Coherent DSPs: These are the heart of the opti-

cal transport network with digital coherent 

Fig. 2.   Devices developed for optical transport network.
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technology [1]
(2)  InP coherent optical modulators and compact 

coherent optical subassembly: These have the 
compact size needed for the next generation of 
optical transport equipment and achieve ade-
quate performance by working in conjunction 
with coherent DSPs [2, 3]

(3)  Optical transmitter and receiver for high-speed 
optical Ethernet: These are essential optical 
components for connection between routers/
switches in client-side and coherent systems [4]
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