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1.   Introduction

Communication traffic continues to increase each 
year, and the total Internet traffic in Japan alone 
reached 5.4 Tbit/s in 2015, increasing by 50% in that 
year [1]. If we assume a 40% increase per year, we 
can predict that the volume will exceed 1 Pbit/s by the 
mid-2020s. The capacity of single-mode fiber (SMF) 
is estimated to be 100 Tbit/s. To overcome the capac-
ity limitations of SMF, research is underway on trans-
port technologies using dense space division multi-
plexing (DSDM) [2]. It is also expected that DSDM 
will similarly need to be used to handle high-volume 
traffic in the photonic nodes used to build optical 
transport networks [3].

The throughput of a photonic node S is given by the 
product of the number of degrees N, the number of 
cores M, the spectral efficiency η, and the desired 
bandwidth B. The relationships between the number 
of degrees, number of cores, spectral efficiency, and 
attainable throughput are shown in Fig. 1. The two 
main bands used for optical communication are the 
1.55-μm band (C band) and the 1.58-μm band (L 
band), which together give a combined 10 THz of 

usable bandwidth. The solid line in the figure shows 
the relationship between spectral efficiency and the 
space division multiplicity (product of degrees and 
cores N • M), to implement an optical node with a 
throughput of 1 Pbit/s, assuming a combined signal 
bandwidth of 10 THz for the C band and L band. 
Achieving 10-Pbit/s-class throughput using modula-
tion with the multiplicity of polarization-division-
multiplexed 16-quadrature amplitude modulation 
(PDM 16-QAM) or greater, which would give a spec-
tral efficiency of 5 bit/s/Hz or better, would give η of 
5 to 6 bit/s/Hz. Therefore, with the desired bandwidth 
B = 10 THz, space division multiplexing (SDM) pho-
tonic nodes with the product of cores and degrees 
N • M of 150 to 200 would be needed. Thus, with 
eight degrees, photonic nodes using DSDM with 
more than 20 cores would be necessary. Wavelength 
selective switches (WSS) already used to build recon-
figurable optical add/drop multiplexers (ROADM) 
have around 20 ports, but there are issues in using 
them for high-capacity DSDM photonic nodes.

This article gives an overview of the devices and 
methods necessary to implement photonic nodes with 
DSDM technology for high-capacity optical  
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networks.

2.   DSDM photonic node structure and SDM 
photonic networks

DSDM photonic nodes introduce a new degree of 
freedom in the spatial domain and with it, additional 
complexity to the node structure. For this reason, it is 
a challenge to implement a simple DSDM photonic 
node that provides the switching function necessary 
for an SDM photonic network.

2.1   Spatial mode switching types
DSDM photonic nodes can be broadly categorized 

into (a) spatial mode joint switching and (b) spatial 
mode independent switching, according to whether 
they can switch spatial modes independently or not 
(Table 1). SDM transmission methods include multi-
core fiber (MCF), which involves multiple cores 
within a single optical fiber, and multi-mode fiber 
(MMF), which involves multiple waveguide modes 
propagating within a single core. We use spatial 
modes to refer to cores within MCF and waveguide 
modes within MMF. Spatial mode joint switching 
switches all spatial modes in a single optical fiber at 
once, outputting them to the same optical fiber. In 
contrast, spatial mode independent switching can 
independently select the output optical fiber for each 

Fig. 1.   Relationship between number of degrees/cores and spectral efficiency.
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Table 1.   Comparison of joint and independent spatial mode switching.

(a) Spatial mode joint switching (b) Spatial mode independent switching 
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(In spatial mode units) 
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coupling

Mode coupling/
No mode coupling No mode coupling 
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spatial mode. 
When MMF is used, the spatial modes (waveguide 

modes) of the optical signal are coupled, so multiple 
modes are transmitted and received together, and the 
receiver must process the signal to separate these 
modes. All waveguide modes input to a single optical 
fiber are output from the fiber, so spatial mode joint 
switching is adequate. However, if MCF is used, cou-
pling between spatial modes (cores) is weak, so opti-
cal signals from different transceiver nodes can be 
transmitted on each spatial mode. The use of spatial 
mode independent switching rather than joint switch-
ing for this yields finer switching granularity and 
more flexible switching control.

2.2    Switching methods according to switching 
granularity and degree of freedom

DSDM photonic node structures for spatial mode 
independent switching are listed in Table 2. They are 
classified according to whether they can switch wave-
lengths independently (wavelength independence) 
and whether they can switch between spatial modes. 
With SDM transmission, multiple optical signals 
with different wavelengths can be multiplexed and 
transmitted in each core or in each waveguide mode. 
DSDM photonic node structures can be classified as 
either (a) fiber cross-connect (fiber XC), which 

switches all wavelengths of the optical signal in a 
single spatial mode at once, or (b) wavelength cross 
connect (wavelength XC), which can switch wave-
lengths independently. Table 2 also lists wavelength 
XCs further classified into those that can or cannot 
switch signals between spatial modes. In these struc-
tures, the switching granularity gets finer moving 
from fiber XC to wavelength XC, and the degree of 
freedom in switching increases by enabling switching 
between spatial modes, providing greater flexibility 
in switching control.

Table 2 also indicates the signal level tuning and the 
scale (number) of switches needed to implement each 
node structure. The wavelength XC configuration 
with spatial mode switching ((b)-2) has very flexible 
switching control and is able to adjust levels to reduce 
disparity among both optical signal spatial modes and 
wavelengths in transmission paths and nodes. How-
ever, it requires more switch elements, so a simple 
node implementation is difficult to achieve.

Network control technologies such as software-
defined networking (SDN)*1 are expected to advance 
in the future, and in line with this, network control 
techniques providing greater flexibility will be needed. 

Table 2.   Classification by switch granularity and degree of freedom.

(a) Fiber XC 
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*1 SDN: A technological approach to control the operation of net-
work devices centrally using software.
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Research is underway at the NTT laboratories on 
wavelength XC as a DSDM photonic node structure 
that will enable more-flexible switching control, as it 
can switch independently between spatial modes.

To allocate network resources efficiently in a net-
work using DSDM photonic nodes, the degree of 
freedom in the spatial domain must be considered. As 
SDM photonic networks are expanded, network 
capacity will need to be designed so as to optimize 
resource utilization. Wavelength domain resources on 
communication routes will have to be allocated in the 
network using conventional wavelength division 
multiplexing (WDM), but spatial domain resources 
will also have to be allocated. The transmission char-
acteristics of the optical fiber medium (MCF or 
MMF) and photonic nodes are also conditions of sig-
nal capacity. Thus, optical fiber characteristics and 
photonic node structures are very important elements 
in SDM photonic networks. 

3.   DSDM photonic node switching devices 

Multiple switching devices are used in a DSDM 
photonic node. SDM technology is expected to be 
used together with WDM communication to increase 
throughput, so a WSS able to switch by wavelength is 
needed. Thus, a structure with multiple WSS is 
needed in an SDM photonic network, and the 
increased footprint of node equipment could become 
a concern.

We are developing a spatial and planar optical cir-
cuit (SPOC) platform [4] combining waveguide opti-

cal systems*2 and spatial optical systems*3, which is 
an original optical system technology integrating 
multiple WSS in a single module. 

A schematic diagram of an optical system integrat-
ing multiple WSS using the SPOC platform is shown 
in Fig. 2. The spatial beam transformer (SBT) circuit 
elements, positioned on optical waveguides, play an 
important role in integrating the multiple WSS. The 
SBT circuits are composed of a slab waveguide and 
an array waveguide with uniform lengths. When the 
light signal shown with pink arrows is input to the 
SBT circuit designated as SBT-Com in Fig. 2, it 
diverges in the plane of the slab waveguide and is 
output to the spatial optical system through the array 
waveguides. Here, the lengths of the array wave-
guides are the same, so the wavefront of the output 
optical signal is planar, with the direction shown by 
the pink dotted line. When the light signal is switched 
to the green input port, the output optical signal will 
be a planar wave in the direction of the green upward-
ly inclined dotted line. The optical signals arrive at a 
different position on the spatial light modulator 
(SLM), which is the switching engine, and are inde-
pendently reflected in different directions. Finally, 
the signals are independently switched to any of the 
output ports and optically combined at the output 

Fig. 2.   Multiple-WSS integration on SPOC platform.
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*2 Waveguide optical system: An optical system using optical wave-
guides, which are optical integrated circuit structures; used to im-
plement highly integrated optical communication devices.

*3 Spatial optical system: An optical system using lenses and dif-
fraction gratings; larger than waveguide optical systems, but ca-
pable of extremely high optical performance.
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SBT circuits. 
We constructed a WSS for MCF [5] using this 

multiple-WSS integrated function. A photograph of 
the optical waveguide system on the SPOC platform 
is shown in Fig. 3. The MCF has a two-dimensional 
(2D) core arrangement, so to combine it with the pla-
nar optical waveguide, the two dimensions must be 
converted to one dimension. In this case, we fabri-
cated a circuit to convert the core arrangement from 
2D to 1D using 3D waveguide technology with an 
ultrashort pulse laser*4 and implemented a direct con-
nection of the MCF to the waveguide circuits. 

The switching spectra for each core of a 1 x 4 WSS 
for a 7-core MCF are shown in Fig. 4. Here, operation 
is configured as a flexible grid with different wave-
length bands for wavelength channels on the first and 
seventh cores (see Fig. 4(a)), as two-way switching 
and attenuation with a 200-GHz channel width on the 

second (Fig. 4(b)) and third cores (Fig. 4(c)), and as 
switching to four different paths with a 50-GHz chan-
nel width on cores 4 to 6 (Fig. 4(d)).

Each of these examples implements wavelength 
selective switching operation, showing that the SPOC 
platform is effective for SDM node switches.

4.   Future prospects

The SPOC platform is a key technology for making 
DSDM photonic nodes smaller. The NTT laborato-
ries will receive support for contracted research from 
NICT (the National Institute of Information and 
Communications Technology) and other institutions 
and conduct research and development (R&D) 
through open innovation [6] to accelerate R&D on 
these elemental technologies.

Fig. 3.   Optical waveguide frontend in WSS for MCF.
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*4 Ultrashort pulse laser: A laser that outputs light pulses with 
lengths in the range of femtoseconds to nanoseconds.
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Fig. 4.  Switching spectra examples from WSS for 7-core MCF.
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