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1.   Introduction

As various systems in our society grow larger and 
more complex, it becomes increasingly important to 
analyze and optimize such systems. These complex 
problems are classified as combinatorial optimization 
problems, which cannot be solved efficiently with 
conventional digital computers. 

It is known that such problems can be converted to 
ground-state-search problems of the Ising model, 
which is a theoretical model proposed by E. Ising that 
describes a group of interacting spins. Several institu-
tions recently reported artificial spin networks that 
were applied to simulate the Ising model in order to 
solve combinatorial optimization problems [1, 2]. 
Our team has been studying such an Ising-type com-
puter called a quantum neural network (QNN) [3]. In 
a QNN, Ising spins are represented by degenerate 
optical parametric oscillators (DOPOs), which are 
coupled with mutual injections of DOPO light. In this 
article, we describe the basic working principle of a 
QNN and report the recent experimental progress 
made in this area at NTT.

2.   Ising model

The Hamiltonian of the Ising model is given as fol-
lows. 

H = − Σi<jJijσiσj.�  (1)

Here, σi and Jij respectively represent the ith spin 
state and the coupling coefficient between the ith and 
jth spins. The ground state of the Ising model corre-
sponds to a set of spins {σi} that minimize Eq. (1) for 
a given matrix {Jij}. A QNN, also known as a coher-
ent Ising machine, is a network of artificial spins 
based on quantum optical oscillators that simulates 
the Ising model [3]. In our QNN, a spin state is repre-
sented by a DOPO, and the spin-spin interaction coef-
ficient Jij is implemented by adjusting the length and 
transmittance of an optical path between the ith and 
jth DOPO (Fig. 1). Since the networked DOPO tends 
to oscillate with a phase configuration that minimizes 
the total energy, we can obtain the ground state of a 
given Ising model by simply reading the phases of the 
DOPOs that are above the threshold. 
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3.   Phase sensitive amplification

An important physical phenomenon for generating 
a DOPO is a nonlinear optical effect called phase 
sensitive amplification [4]. When we input a pump 
light (angular frequency ωp) and a signal light ωs to a 
medium with the second or third order optical nonlin-
earity, we can generate an idler light with an angular 
frequency ωi = ωp − ωs (second order case) and an 
initial phase −θ, where θ represents the initial phase 
difference between the pump and the signal. In par-
ticular, when the signal and idler frequencies degen-
erate (ωs = ωi), the amplification coefficient of the 
signal amplitude is proportional to cosθ, which 
means that the light is efficiently amplified when its 
initial phase difference from the pump is either 0 or π. 

To achieve such a phase sensitive amplifier (PSA), 
we can utilize four-wave mixing in an optical fiber [5, 
6] or parametric down-conversion in a periodically 
poled lithium niobate waveguide [4, 7]. If we pump a 
PSA placed in an optical cavity, the 0- or π-phase 
component of the spontaneous emission noise is most 
efficiently amplified by the PSA, which eventually 
leads to an optical parametric oscillation with either 
one of the binary phase states (Fig. 2). In addition, if 
we use a pulsed pump whose temporal interval is set 
at 1/N of the cavity round-trip time, we can generate 
N time-multiplexed DOPOs using a single cavity. 

We succeeded in generating more than thousands of 
DOPOs using a 1-km fiber cavity, paving the way 
towards achieving a large-scale QNN [5–7]. More 
recently, we reported the generation of more than 1 
million DOPOs using a 10-GHz clock pump and a 
20-km fiber cavity [8].  

We can implement couplings between time-multi-

plexed DOPOs by inserting delayed interferometers. 
In an experiment reported in an earlier paper [6], we 
implemented nearest-neighbor coupling between 
DOPOs by placing a 1-bit delayed interferometer in 
the fiber cavity so that we could realize a one-dimen-
sional Ising model. With the optically coupled 
DOPOs, we successfully observed that the DOPOs 
showed ferro- and antiferromagnetic behavior when 
we changed the phase difference between the two 
arms of the interferometer, suggesting that the 
DOPOs well simulated the characteristics of low-
temperature spins. 

4.   Measurement-feedback scheme

The above one-dimensional Ising model experi-
ment was important for understanding the physics of 
a QNN. However, it is difficult to solve real-world 
combinatorial optimization problems that are usually 
represented by large and complex spin networks 
using an optically coupled DOPO network. For 
example, in order to achieve all-to-all connection 
between 2000 DOPOs, we need as many as 1999 
interferometers placed in the cavity, which is very 
hard to do experimentally. 

We employed the measurement-feedback scheme 
shown in Fig. 2 in order to achieve flexible couplings 
among thousands of DOPOs. In this scheme, we mea-
sure the amplitudes of all N DOPOs {ci} while the 
DOPOs are circulating in the cavity and while con-
trolling the evolution of their amplitudes. The mea-
surement results are fed to a field programmable gate 
array (FPGA), where the spin-spin coupling matrix 
{Jij} for a given problem is set in advance. In each 
DOPO circulation in the cavity, the FPGA calculates 

Fig. 1.   Concept of quantum neural network (QNN).
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si = ΣjJijcj, the feedback signal for the ith DOPO in the 
next round trip. The feedback signal si is used to 
modulate a light pulse whose frequency is exactly the 
same as that of the DOPOs, and the pulse is launched 
to the ith DOPO. As a result, any pair among N 
DOPOs can be coupled with this scheme. The num-

ber of such combinations is N(N−1)/2 when the prob-
lem is given by a directed graph. 

We used the measurement-feedback scheme to con-
struct a QNN with 2048 DOPOs [9], with which we 
succeeded in finding the solutions to maximum cut 
problems for a 2000-node graph (Fig. 3). In particular, 

Fig. 2.   QNN configuration.
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Fig. 3.   �Solution searching of a 2000-node graph problem with QNN. (a) Graph problem (random graph with 19,990 edges). 
The pink dots and white lines respectively show the nodes and edges. (b) Solution obtained with the QNN 
experimentally. The pink dots are divided into red and blue dots; as a result, we can cut the edges shown by the green 
lines. Larger dots exhibit nodes with a larger number of edges.
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when we applied the QNN to a maximum cut prob-
lem of a 2000-node complete graph, we obtained a 
solution that corresponds to a reference Ising energy 
in less than 100 µs, which is approximately 50 times 
shorter than the computation time obtained with 
simulated annealing run on a CPU (central process-
ing unit) (Fig. 4). 

5.   Future prospects

Although QNN research is still in a very early 
stage, our experimental results suggest that the QNN 
may outperform conventional digital computers for 
certain types of problems. We are currently planning 
to increase the number of DOPOs of our QNN to 
further widen the performance advantage over digital 
computers. We also plan to search for applications of 
QNN by collaborating with researchers from various 
fields such as statistical physics, mathematics, and 
computer science. 
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GW-SDP: semidefinite programming relaxation algorithm by Goemans and Williamson
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The blue and red curves show the energies obtained with the QNN and simulated annealing
run on a CPU. The dotted line denotes the reference energy obtained with an algorithm
called GW-SDP. It took 3.2 ms to reach the reference energy using simulated annealing,
while the QNN delivered the solution with the same Ising energy in only 0.7 ms.
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Fig. 4.   �Ising energy as a function of computation time for a maximum cut problem of a 2000-node complete graph (K2000).
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