
1 NTT Technical Review

1. Calculating the meaning of words

Many challenges still need to be overcome to reach
the stage where computers can accurately understand
and manipulate natural language at the same level as
human beings. In particular, it is a difficult problem
for computers to correctly understand semantic rela-
tionships between words. However, a method called
word embedding—a technique enabling computers to
understand the semantic relationships between
words—is attracting a lot of attention from research-
ers and engineers in the natural language processing
field (Fig. 1).

This technique was originally developed in the
1980s [1], but there has been a revival with the recent
development of deep learning methods. More pre-
cisely, the method proposed by Mikolov et al. [2] has
empirically proven that word embedding vectors can
be trained within a feasible run-time even if the size
of training data is very large, for example, web-scale
data. Thus, the method can capture very accurate
semantic relationships between words with the help
of large-scale text data since such large-scale data
should implicitly contain information equivalent to
the common sense of human beings.

As a simple example for explaining the usefulness
of word embedding vectors, computers can estimate
the meanings of words by the vector calculations

among the word embedding vectors. Suppose we ask
someone “Which word has the most appropriate rela-
tion to the word ‘Germany,’ if the word is based on the
same relation existing between ‘France’ and ‘wine’?”
Many people would answer “beer,” for instance. Of
course there is no unique correct answer for this ques-
tion, and some people might say that “beer” is not a
correct answer in his/her view. However, many peo-
ple feel that “beer” is an acceptable answer.

These days, computers are becoming capable of
developing such common sense or knowledge of
human beings with the help of word embedding vec-
tors. The most important point here is that this type of
intuitive guess—similar to that done by human
beings—is now manageable for computers.

Traditionally, the approach used by computers to
identify the semantics of words involved the use of
hand-made semantic dictionaries. The essential dif-
ference from such traditional dictionary-based meth-
ods with the word embedding approach is coverage
and whether the method involves an automatic or
hand-made construction. It is easily imaginable that
the traditional dictionary-based methods can solve
semantic problems with high accuracy if the diction-
ary has information on the given problems; if not,
dictionary-based methods are not effective for solv-
ing such problems. Moreover, a large cost may be
required to keep updating the dictionary to improve

Memory-efficient Word Embedding
Vectors
Jun Suzuki and Masaaki Nagata

Abstract
Word embedding is a technique for identifying the semantic relationships between words by com-

puter. Word embedding vectors enable computers to provide a guess similar to the intuition or common
sense of human beings. This article introduces a method for reducing the required memory consumption
of this important fundamental operation of word embedding vectors while maintaining the ability to
calculate semantic relationships, which is an important property when this technique is applied to real
world systems.

Keywords: natural language processing, deep learning, word embeddings

Feature Articles: Communication Science that Enables
corevo®—Artificial Intelligence that Gets Closer to People

2

Feature Articles

Vol. 15 No. 11 Nov. 2017

the coverage.
For example, a computer might not be able to solve

the above example of beer using a dictionary-based
method since the importance of such common sense
is relatively low, and thus, it might not be included in
the dictionary. In contrast, word embedding vectors
can be automatically generated from a large amount
of text data, and no human cost is required for main-
tenance. Moreover, conceptually, information on all
the words appearing in the training data can be stored
in the embedding vectors. In fact, word embedding
can easily handle millions of words. This fact implies
that the word embedding method can handle a much
larger number of words than dictionary-based meth-
ods (Fig. 2).

2. Usefulness of word embedding vectors
for computers

Word embedding vectors can be utilized in many
natural language processing applications such as
machine translation, question answering, information
retrieval, and document summarization. However, we
sometimes encounter several inconvenient points
when trying to apply word embedding vectors to real

systems. For example, there are a lot of random fac-
tors when word embedding vectors are constructed
using conventional methods. Therefore, the resultant
word embedding vectors lack reproducibility, mean-
ing they always differ from each other when many
trials are conducted.

In another example, we have to completely retrain
embedding vectors in situations where we need
embedding vectors with distinct numbers of dimen-
sions, since the dimensions of word embedding vec-
tors can be pre-defined before starting the training,
and different applications often prefer their own num-
bers of dimensions. This is an example indicating that
an advanced technology cannot always be easily
applied to real world systems. To overcome this
inconvenience of low usability, we have developed
several methods that have high usability [3–5]. In the
remainder of this article, we explain one of our meth-
ods for significantly reducing the memory require-
ments of word embedding vectors [5].

3. Method for reducing memory requirements

We first explain the usefulness of reducing memory
requirements. Suppose we are building a dialogue

Fig. 1. Word embedding vectors.

Today

Tomorrow

Japan

USA

China

Korea

2016
Yen

Dollar

Yuan

Car

Bicycle

0.045866

−0.3533

−0.01023

−0.1734

0.078786

−0.02387

0.149431

0.163471

0.029654

−0.16673

0.044333

−0.08889

−0.00371

−0.03058

0.075763

0.003588

−0.11543

−0.05605

0.079334

0.032219

0.105802

0.022848

−0.12678

−0.15497

−0.00497

0.08013

0.021459

−0.09084

0.02265

−0.20171

0.293562

−0.03764

−0.32926

−0.08524

−0.00515

−0.286

0.070959

0.149368

0.049479

0.307067

−0.06419

−0.15812

−0.02928

−0.00735

−0.10276

0.11159

0.111257

0.19628

−0.06238

0.297801

−0.15017

0.085198

0.032716

−0.14642

0.262186

0.057619

−0.27228

0.093743

−0.26432

0.337721

0.0114

−0.09778

−0.15543

−0.16883

0.001905

−0.04322

−0.20184

−0.1497

−0.11189

0.062614

−0.07705

−0.24721

−0.02119

−0.14325

0.222465

−0.18823

−0.20058

−0.36656

−0.01984

0.055826

0.097063

−0.00602

0.277751

0.198682

0.122003

−0.27685

−0.10949

−0.27477

−0.03091

−0.31666

−0.04255

−0.11493

0.220544

0.061345

−0.10717

−0.01153

−0.08966

0.118642

−0.00157

−0.18438

0.080452

−0.14884

0.111553

−0.0324

−0.02437

0.102776

−0.2606

−0.00471

0.087995

0.021238

−0.0235

0.109195

−0.02351

−0.1488

0.095227

−0.05825

−0.06406

−0.03525

0.201264

0.046678

nations

years

men

man

woman

lions

lion

lioness

Word embedding vectors

tomorrow

today

car

Relationships between words
are represented as the
distances and angles between
words.

* Each word is represented
as a point in the vector space.

Semantic similarities are encoded
into distances in the vector space.

Ex 2. Relationship between words angle

The same relationship has the
same angle.

Each word is represented as a vector.
Ex 1. Similarity distance

3 NTT Technical Review

Feature Articles

system in robots used mainly for communicating
with users. In this case, we aim to put as many words
into the system as possible since it is nearly impos-
sible for the system to appropriately process unknown
words. However, there is a trade-off between perfor-
mance and memory requirements in general. Namely,
the amount of required memory storage to store all of
the word embedding vectors becomes a large prob-
lem when we add a large number of words into the
systems.

For example, let us consider the case when utilizing
three million words and a 300-dimensional vector is
assigned to each word. Here, we assume that we need
a 4-byte memory to represent a single precision float-
ing point number. Then the memory requirement for
representing overall word embedding vectors
becomes 3,000,000 (words) x 300 (dimensions) x 4
(bytes) = 3,600,000,000 (bytes). This means that it
requires 3.4 GB of memory. We emphasize that we
need 3.4 GB of memory only for a single module, not
for an entire system. This is unacceptably large in
general.

Here, we assume that memory requirements are
one-hundredth, that is, 34 MB, of the above amount.
Then the total cost of memory storage integrated into
robots can be significantly reduced. This actual cost
reduction is essentially the most important factor in a
real world product. In addition, we can easily inte-
grate word embedding vectors into applications on
mobile devices. Less memory usage also leads to

lower power consumption even though the memory
storage in mobile devices may increase rapidly in the
near future. Consequently, we can expect various
positive effects for real world applications by merely
developing a means of reducing the memory require-
ments.

4. Method

Our method for reducing the memory requirements
consists of a combination of several machine learning
techniques such as group regularization, dual decom-
position, augmented Lagrangian methods, and clus-
tering. We do not describe these techniques in detail
here but rather briefly explain the essence of our
method. As described previously, word embedding
vectors are generated from large training data. More
precisely, what the method is actually trying to do
during the learning process is to find appropriate val-
ues in the embedding vectors assigned to each word
by minimizing the given objective function. The basic
idea of our method is as follows: Suppose we observe
that a certain value sequence pattern, for example,
(0.3, –0.2, 0.1, 0.5), appears many times in the
obtained embedding vectors. In this situation, we can
discard these patterns with no information loss by
preserving a single value sequence pattern among
them and adding information consisting of appear-
ance of the same value sequence pattern to the
locations where all the same value sequence patterns

Today

Tomorrow

Japan

USA

China

Korea

2016
Yen

Dollar

Yuan

Car

Bicycle

0.045866

−0.3533

−0.01023

−0.1734

0.078786

−0.02387

0.149431

0.163471

0.029654

−0.16673

0.044333

−0.08889

−0.00371

−0.03058

0.075763

0.003588

−0.11543

−0.05605

0.079334

0.032219

0.105802

0.022848

−0.12678

−0.15497

−0.00497

0.08013

0.021459

−0.09084

0.02265

−0.20171

0.293562

−0.03764

−0.32926

−0.08524

−0.00515

−0.286

0.070959

0.149368

0.049479

0.307067

−0.06419

−0.15812

−0.02928

−0.00735

−0.10276

0.11159

0.111257

0.19628

−0.06238

0.297801

−0.15017

0.085198

0.032716

−0.14642

0.262186

0.057619

−0.27228

0.093743

−0.26432

0.337721

0.0114

−0.09778

−0.15543

−0.16883

0.001905

−0.04322

−0.20184

−0.1497

−0.11189

0.062614

−0.07705

−0.24721

−0.02119

−0.14325

0.222465

−0.18823

−0.20058

−0.36656

−0.01984

0.055826

0.097063

−0.00602

0.277751

0.198682

0.122003

−0.27685

−0.10949

−0.27477

−0.03091

−0.31666

−0.04255

−0.11493

0.220544

0.061345

−0.10717

−0.01153

−0.08966

0.118642

−0.00157

−0.18438

0.080452

−0.14884

0.111553

−0.0324

−0.02437

0.102776

−0.2606

−0.00471

0.087995

0.021238

−0.0235

0.109195

−0.02351

−0.1488

0.095227

−0.05825

−0.06406

−0.03525

0.201264

0.046678

Large-scale text data

Traditionally, made by hand
 low coverage
(infeasible for handling large
volume of words)

(More than millions of words)

Examples: news articles,
Wikipedia, texts on web

Method for obtaining
word embedding vectors
 machine learning approach Word

embedding
vectors

Fig. 2. Method for obtaining word embedding vectors.

4

Feature Articles

Vol. 15 No. 11 Nov. 2017

appear. Then, we can reduce the overall memory
requirements if the memory requirement of remem-
bering where the value sequence patterns appear is
smaller than remembering the original value sequence
patterns (Fig. 3).

By implementing this idea, we can continue to
reduce the overall memory requirements if the num-
ber of distinct value sequence patterns in the word
embedding vectors gets smaller and smaller. Unfortu-
nately, however, none of the conventional methods

automatically generate such convenient value
sequence patterns. Therefore, we have built a method
that can force the system to produce the word embed-
ding vectors under the condition of constructing word
embedding vectors with pre-defined K distinct value
sequence patterns while maintaining the perfor-
mance. Using this method, we can produce word
embedding vectors within the memory desired by the
users (Fig. 4).

Word embedding vectors are always constructed under the constraint of a restricted number (K)
of value sequence patterns.

Word embedding vectors obtained
by conventional method

Word embedding vectors with
reduced memory requirements

pointer

D Dimension

D Dimension

e|υ |

e|υ |

e1

e2

e3

e4

e5

e6

e7

e1

e2

e3

e4

e5

e6

e7

K

01

00

11

00

00

00

10

00

Fig. 4. Proposed method.

Five vectors can be converted
into one vector and pointers
with no information loss.

Example −0.1

e1

e2

e3

e4

e5

We can reduce the overall memory requirements
since the memory requirements for remembering
 is much smaller than .

Basic idea: reduce the memory requirements by sharing the memory space if there are many
“identical value sequence patterns”

0.2 −0.5 0.3

e|υ |

Fig. 3. Idea for reducing the memory requirements.

5 NTT Technical Review

Feature Articles

5. Future direction

We are conducting research with the objective of
having the most advanced research results become
basic technologies that are used in real world systems
including artificial intelligence related systems. It is
possible to directly and indirectly support improve-
ments of actual systems being used by further devel-
oping the basic technologies used in the systems.
Thus, our final goal is to develop many basic tech-
nologies that offer high usability for computers and
system developers, which we believe to be one of the
most important characteristics of basic technologies.

References

[1] G. E. Hinton, “Learning Distributed Representations of Concepts,”
Proc. of the Eighth Annual Conference of the Cognitive Science Soci-
ety, pp. 1–12, Amherst, MA, USA, Aug. 1986.

[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” Proc. of the First Interna-
tional Conference on Learning Representations (ICLR 2013), Scotts-
dale, AZ, USA, May 2013.

[3] J. Suzuki and M. Nagata, “A Unified Learning Framework of Skip-
grams and Global Vectors,” Proc. of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International
Joint Conference of the Asian Federation of Natural Language Pro-
cessing (ACL-ICNLP2015), Beijing, China, July 2015.

[4] J. Suzuki and M. Nagata, “Right-truncatable Neural Word Embed-
dings,” Proc. of the 15th Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT2016), San Diego, CA, USA,
June 2016.

[5] J. Suzuki and M. Nagata, “Learning Compact Neural Word Embed-
dings by Parameter Space Sharing,” Proc. of the 25th International
Joint Conference on Artificial Intelligence (IJCAI-16), New York,
USA, July 2016.

Jun Suzuki
Senior Research Scientist, Linguistic Intelli-

gence Research Group, Innovative Communica-
tion Laboratory, NTT Communication Science
Laboratories.

He received a Ph.D. in engineering from the
Graduate School of Information Science, Nara
Institute of Science and Technology in 2005. He
joined NTT Communication Science Laborato-
ries in 2001, where he is researching machine
learning, natural language processing, and artifi-
cial intelligence areas.

Masaaki Nagata
Senior Distinguished Researcher, Group

Leader, NTT Communication Science Laborato-
ries.

He received a B.E., M.E., and Ph.D. in infor-
mation science from Kyoto University in 1985,
1987, and 1999. He joined NTT in 1987. His
research interests include morphological analy-
sis, named entity recognition, parsing, and
machine translation. He is a member of the Insti-
tute of Electronics, Information and Communi-
cation Engineers, the Information Processing
Society of Japan, the Japanese Society for Artifi-
cial Intelligence, the Association for Natural
Language Processing, and the Association for
Computational Linguistics.

