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1.   Introduction

Automatic speech recognition (ASR) is being used 
more and more in our everyday life. For example, it 
is now common to speak to our smartphones to ask 
for the weather forecast or the nearest restaurant. 
Communication agents such as home assistants and 
robots are also starting to enter our living rooms, sug-
gesting that speech may become a common modality 
for accessing information in the near future. 

The rapid expansion of ASR based products has 
been made possible by the significant recognition 
performance gains achieved through the recent intro-
duction of deep neural networks (DNNs) [1]. How-
ever, simply using DNNs does not solve all the issues. 
Speech recognition performance can still greatly vary 
depending on the acoustic context such as the speaker 
voice characteristics or the noise environment. 

In this article, we describe our approach to tackle 
this problem by making the ASR system adaptive to 
the acoustic context. To achieve this, we have devel-
oped a novel DNN architecture that we call context 

adaptive DNN (CADNN) [2]. A CADNN is a neural 
network whose parameters can change depending on 
the external context information such as speaker or 
noise characteristics. This enables us to rapidly gen-
erate an ASR system that is optimal for recognizing 
speech from a desired speaker, opening the way to 
better ASR performance.

In the remainder of this article, we briefly review 
how current ASR systems work, focusing on the 
acoustic modeling part. We then describe in more 
detail the proposed CADNN and a speaker adaptation 
experiment we conducted to confirm its potential. We 
conclude this article by discussing some outlooks on 
potential extensions of CADNNs to achieve online 
speaker adaptation and applications to other research 
areas.

2.   Deep learning based acoustic modeling

A speech recognition system is composed of sev-
eral components, as illustrated in Fig. 1. First, there is 
a feature extraction module, which extracts speech 
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features from each short time frame of about 30 ms of 
a speech signal. Then, the acoustic model computes 
the probability that a speech feature corresponds to a 
given phoneme. Finally, the decoder finds the best 
word sequence given the input sequence of features 
by taking into account the phoneme probabilities 
obtained from the acoustic model, a pronunciation 
dictionary that maps the phoneme sequences to 
words, and scores obtained from the language model 
that outputs the probability of word sequences. In the 
remainder of this article, we focus our discussion on 
the acoustic model, and in particular on speaker adap-
tation.

Recently developed acoustic models use DNNs to 
map speech features to phoneme probabilities. An 
example of such an acoustic model is shown in Fig. 2. 
A DNN consists of several hidden layers that perform 
a nonlinear transformation of their input. With these 
stacked hidden layers, a DNN can model a complex 
mapping between its input features and its outputs. In 
the context of acoustic modeling, the inputs are 
speech features and the outputs are phoneme proba-
bilities. Training such a DNN requires a large amount 
of speech data, from a few dozen hours to thousands 
of hours, depending on the task. The training data 
must also include the actual spoken phoneme 
sequences that can be derived from manual transcrip-
tions of the utterances. With such training data, the 
acoustic model training follows the standard proce-
dure for training DNNs such as error backpropaga-
tion with stochastic gradient descent.

To ensure that the acoustic model can well recog-
nize speech in a variety of acoustic contexts such as 
for different speakers, the training data must contain 
speech from a large variety of speakers. Using such 
diverse training data enables us to obtain a good 
model on average. However, the DNN may not be 
optimal for a given speaker seen during the deploy-

ment of the recognition system because of the speak-
er’s specific speaking style, which may result in 
poorer ASR performance for that particular speaker. 

Solving this issue requires us to adapt the acoustic 
model to the desired speaker. However, adapting the 
acoustic model is challenging because it is often dif-
ficult to obtain the large amount of speech data with 
transcription that would be needed to train an acous-
tic model for the desired context. Specifically, it is 
impractical to require several hours of speech from 
each user to create a personalized acoustic model. In 
many applications, acoustic model adaptation should 
thus be rapid, that is, requiring a small amount of 
speech data such as a few seconds, and unsupervised, 
meaning it does not require transcribed data.

Fig. 1.   Speech recognition system.
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3.   CADNN

Extensive research has been done to find approach-
es for adapting an acoustic model to speakers. A 
recent promising attempt consists of informing the 
DNN about the speaker by adding to its input an aux-
iliary feature describing the speaker characteristics. 
Such approaches have interesting properties because 
the speaker feature can be computed with only a few 
seconds of speech data, and they do not require tran-
scriptions. However, simply adding an auxiliary fea-
ture to the input of a DNN has only a limited effect, 
as it can only partially adapt the DNN parameters. In 
this article, we describe an alternative way to exploit 
auxiliary information through a CADNN.

The idea behind CADNN is that a network trained 
for a given context should be optimal to recognize 
speech in that acoustic context. For example, we 
could build different networks to recognize speech 
from female and male speakers. Adaptation could 
then be realized simply by selecting the network cor-
responding to the target acoustic context. Such a 
naïve approach raises two issues. First, only part of 
the training data can be used for training each of the 
separate models. This would seem to be suboptimal 
because, for example, some speech characteristics are 
common to all speakers, and thus, better models 
could be trained when exploiting all the training data. 
Another issue is that it is unclear how to select the 
acoustic model in an optimal way.

The CADNN addresses these issues by making 
only part of the network dependent on the acoustic 
context. Moreover, we propose to select the model 
parameters using auxiliary features representing the 
acoustic context such as the speaker characteristics. A 
schematic diagram of a CADNN is shown in Fig. 3 
[3]. As illustrated in the figure, a CADNN has one 
hidden layer replaced by a context adaptive layer, that 
is, a layer that is split into several sublayers, each 
associated with a different acoustic context class. 

For example, with two acoustic context classes, we 
could have a sublayer for male speakers and a sub-
layer for female speakers. The output of the hidden 
layer is obtained as a weighted sum of the output of 
each sublayer, with context weights derived from the 
auxiliary features. In our implementation, the context 
weights are computed from a small auxiliary network 
that has the auxiliary features as inputs. The outputs 
are the context weights that are optimal for recogniz-
ing speech for that acoustic context.

A CADNN has several interesting properties. The 
auxiliary network and the CADNN can be connected 

and trained jointly. This means that we can obtain 
context weights that are optimal for the acoustic con-
text. Moreover, using such a joint training scheme, 
we do not need to explicitly define the acoustic con-
text classes; they can be automatically learned from 
the training data during the training procedure. Final-
ly, since except for the factorized layer, the rest of the 
network is shared among all the different acoustic 
context classes, all the training data can be used to 
train the parameters of the network.

4.   Rapid speaker adaptation with CADNN

A CADNN can be used to achieve rapid speaker 
adaptation of acoustic models. The graph in Fig. 4 
shows the word error rate for recognition of English 
sentences read from the Wall Street Journal. Note that 
lower word error rates indicate better ASR perfor-
mance. Our baseline system consists of a DNN with 
five hidden layers with ReLU (rectified linear unit) 
activations. The proposed CADNN uses a similar 
topology to that of the baseline DNN but has its sec-
ond hidden layer replaced with a context adaptive 
layer, with four context classes. As auxiliary features, 
we use features representing speakers that are widely 
used for speaker recognition tasks. These auxiliary 
features were computed using a single utterance, 
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Fig. 3.   Proposed CADNN for speaker adaptation.
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which corresponds in this experiment to less than 10 s 
of speech data. Moreover, the speaker features can be 
obtained without transcriptions.

These results demonstrate that the proposed 
CADNN was able to significantly improve ASR per-
formance, with a relative improvement of about 10% 
over the baseline. Since only a few seconds of speech 
data without transcriptions are sufficient to compute 
the auxiliary features, this experiment proves that 
CADNN can achieve rapid unsupervised speaker 
adaptation. 

5.   Outlook

The proposed CADNN appears promising for 
unsupervised rapid speaker adaptation of acoustic 
models. Potential further improvement could be 
achieved by developing better speaker representation 
for the auxiliary features [4]. Moreover, extension of 
the proposed scheme to online adaptation, where the 
adaptation process could start with even less data, is 
also a challenging research direction [5].

Finally, the proposed CADNN architecture is gen-
eral and could be applied to other problems. For 
example, we are currently exploring the use of the 
same principle to extract a target speaker from a mix-

ture of speakers [6]. We also believe that the proposed 
CADNN could be employed in other fields requiring 
context or domain adaptation of DNNs.
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Fig. 4.   Proposed CADNN for speaker adaptation.
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