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1.   Introduction

Controlling the spectral power distribution (SPD) 
of illumination can enhance the colors of an object 
without requiring any image processing. A tunable 
multi-wavelength light source can control light inten-
sities of all wavelengths and generate light with vari-
ous SPDs [1]. However, the total output of this kind 
of lighting system is currently relatively weak and is 
not suited for practical use. In contrast, the output of 
light-emitting diodes (LEDs) has been getting stron-
ger recently, and a color tunable lighting system con-
sisting of various LED colors can be used to control 
the SPD of illumination.

In this article, we propose a method to enhance 
several colors concurrently by changing the SPD of 
illumination while maintaining the metameric white 
(explained in the following section) and the color bal-
ance. The SPD of illumination is designed based on 
the spectral reflectance of color patches on a color 
chart. We conducted experiments to observe the 
enhancement of colors—before and after applying 
this methodology—against the color chart and old 
Japanese woodblock prints (ukiyo-e) as sample 
objects. 

2.   Design of SPD of illumination for 
color enhancement

We explain here the steps involved in designing the 
SPD of illumination.

2.1    Synthesis and control of illumination using 
LEDs

The SPD of illumination can be represented as a 
linear combination of the SPDs of a monochrome 
LED. Let us consider a lighting system consisting of 
N-colored LEDs. The SPD of objective illuminant 
Iobj(λ) is described as:

Iobj(λ) = 
N

i=1
wiei(λ), (1)

where λ is wavelength and wi and ei(λ) are the weight 
and SPD of the i th color LED of the lighting system. 
An object’s color is enhanced by changing the values 
of w = [w1, ..., wN]. To maintain the color balance of 
the object under illumination before the SPD of the 
illumination is changed, let us consider the constraint 
conditions where the targeted illumination satisfies 
metameric*1 white. This means that chromaticity*2 

values of standard white and its luminance are  
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maintained after the SPD of illumination is changed. 
These conditions are described as:

 { fa(Iorg(λ),1) − fa(Iobj(λ),1)}2 + { fb(Iorg(λ),1) 
− fb(Iobj(λ),1)}2 = 0,  (2)

fL(Iobj(λ),1) = fL(Iorg(λ),1), (3)

where Iorg(λ) is the SPD of the original illumination. 
Here, fL(I(λ), r(λ)), fa(I(λ), r(λ)), and fb(I(λ), r(λ)) are 
functions for calculating CIE-Lab*3 values, where 
I(λ) is the SPD of illumination and r(λ) is the spectral 
reflectance of an object’s surface.

2.2    Design of SPD of illumination using color 
chart

Let us consider the case in which a target color for 
enhancement is a color patch whose spectral reflec-
tance is robj(λ). The SPD of the objective illumination 
Iobj(λ) is obtained by determining weight w = [w1, ..., 
wN], which fulfills Eqs. (2) and (3) and maximizes ε. 

ε = fa(Iobj(λ), robj(λ))2 + fb(Iobj(λ), robj(λ))2. 
 (4)

Let the number of target colors be represented as C. 
Then ε is rewritten as: 

ε = 
C

j=1
εj, (5)

εj = fa(Ij(λ), rj(λ))2 + fb(Ij(λ), rj(λ))2. (6)

When the target colors are blue, green, and red, ε is 
represented as:

ε = εblue + εgreen + εred. (7)

3.   Experiments 

We conducted experiments to evaluate the effec-
tiveness of our method. The experiments and results 
are described in this section.

3.1   Experimental setup
We experimented with a 16-color LED lighting 

system (Telelumen Light Replicator, TeleLumen 
LCC) as the light source. The SPDs of each LED are 
shown in Fig. 1; the intensity of light for each color 
can be modulated. We designed the SPD of illumination 
using three color patches of the X-Rite ColorCheckerTM 

Fig. 1.   Spectral power distributions of each LED in the 16-color LED lighting system.
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*1 Metamerism: The phenomenon that occurs due to the ability of 
human eyes to see two colors as being the same even when the 
two colors have different spectral power distributions. The two 
matching colors are called metamers.

*2 Chromaticity: An objective specification of the quality of a color 
regardless of its luminance.

*3 CIE-Lab: The second of two systems adopted by CIE (Interna-
tional Commission on Illumination) in 1976 as models that better 
showed uniform color spacing in their values.
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(no. 13 for blue, no. 14 for green, and no. 15 for red); 
the spectral reflectance of these patches is shown in 
Fig. 2. 

We experimented with synthesizing daylight using 
the lighting system as the reference illumination. 
First, we used the color chart to design the SPD of the 
illumination and focused on enhancing the blue, 
green, and red colors. The weights of each LED were 
determined using the generalized reduced gradient 
method. Next, we evaluated the color enhancement 

results on a chromaticity diagram using the color 
chart and several old woodblock prints (ukiyo-e), 
which were discolored with degraded color satura-
tion.

3.2    Results of designing SPD of illumination and 
color enhancement

The SPDs of daylight (blue dashed line) and the 
designed illumination (red solid line) are shown in 
Fig. 3. The SPD of the designed illumination has 

Fig. 2.   Spectral reflectance of blue, green, and red patches.
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Fig. 3.   Spectral power distribution of illumination.
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three peaks whose center wavelengths are 435, 530, 
and 634 nm. These center wavelengths correspond to 
the peak wavelengths of the spectral reflectance of 
the blue and green patches and to the rising wave-
length of the spectral reflectance of the red patch.

Images of the color chart captured under synthe-
sized daylight and under the designed illumination 
are shown in Fig. 4. A comparison of color patches 
along the bottom row indicates that the gradation of 
white to gray is not different after changing the illu-
mination. However, the saturations of other color 
patches were enhanced after the illumination chang-
es, especially for the blue, green, pink, orange, and 
red patches. The color balance of the entire image 
was also maintained after the illumination change. 

Chromaticity values of white, blue, green, and red 
patches plotted on the CIE-u’v’ chromaticity dia-
gram*4 are shown in Fig. 5. The blue diamonds and 

the dashed line represent colors under the illumina-
tion before the SPD was changed, and the red circles 
and solid line represent colors after the illumination 
was changed. This diagram shows that u’v’ values of 
white under each kind of illumination are plotted in 
the same spot; however, the color saturation of the 
other three color patches is enhanced.

Images of the woodblock print (ukiyo-e) captured 
under daylight (left) and under the designed illumina-
tion (right) are shown in Fig. 6. In the upper images, 
the reddish and green parts on the clothes under the 
designed illumination look more vivid than those 
under daylight. The pink blossoms also look more 
reddish, and it is easier to distinguish their shapes. 

Fig. 4.   Captured images of color chart under synthesized daylight (left) and under the designed illumination (right).

Fig. 5.   Color distribution of white, blue, green, and red patches plotted on CIE-u’v’ chromaticity diagram.
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*4 CIE-u’v’ chromaticity diagram: A two-dimensional representa-
tion or cross-section of a three-dimensional color space. Here, u’ 
and v’ are chromaticity coordinates.
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Likewise, the reddish and blue-green parts on the bot-
tom prints are more vivid under the designed illumi-
nation. Note that the total color balance of these 
prints is properly maintained through the SPD illumi-
nation change, and the color saturation of some areas 
on these prints was enhanced. 

The colors of the blue, green, and reddish parts on 
these prints plotted on the CIE-u’v’ chromaticity dia-
gram are shown in Fig. 7. The circle represents a 
white point, and the red and blue arrows represent 
directions of color shifts that were enhanced by 
changing the SPD of illumination. The color shifts in 
the diagram also indicate how much the colors repre-
sented in the woodblock prints were enhanced. 

4.   Conclusion

We proposed a method for enhancing several colors 
concurrently by changing the SPD of illumination. In 
our experiments, blue, green, and red patches of the 
X-Rite ColorCheckerTM were used in designing the 
illumination, and the designed illumination was syn-
thesized by using a 16-color LED lighting system. 
We conducted experiments using old Japanese wood-
block prints (ukiyo-e) discolored with degraded color 
saturation, in which we illuminated the prints with 
the designed light. The results showed that the 
designed illumination enhanced colors while main-
taining the metameric white and the color balance 
under daylight. 
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Fig. 6.    Observed images under daylight (left) and under the 
designed illumination (right).

Fig. 7.   Color shift on CIE-u’v’ chromaticity diagram.
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