
1 NTT Technical Review

1. Upstream first

Open source software (OSS) is computer software
whose source code has been made available with a
license in which the copyright holder gives anyone
the right to freely change and distribute the software
for any purpose. OSS is continually upgraded and
enhanced as features are added, and its bugs are fixed
through an ongoing collaborative effort by the OSS
community. In recent years, we have seen a growing
tendency for major companies such as Google, Face-
book, and IBM to make their own software available
as OSS.

Companies that adopt OSS can do so using two
strategies: utilizing the software as-is or developing
new features to better meet the companies’ needs. In
both cases, a significant new approach called
upstream first [1] has emerged. The idea of upstream
first is to enable the companies’ own developers to
work together with the upstream developers and build
relationships with the upstream community to
improve the OSS. When the first strategy of utilizing
OSS as-is is applied, it is beneficial to follow the lat-
est version of the software as upstream first, as it
ensures the best quality of the software. With the sec-
ond strategy of building additional functionalities
into the OSS, the upstream first approach is effective

in avoiding conflicts between source code lines added
by company developers and those of the community
version of the OSS. We explain these two strategies
more closely using real examples.

1.1 First strategy: following the latest version
Most software packages developed recently must

be updated periodically with the latest version to
maintain the software quality. While these changes
are mostly minor, they sometimes address serious
issues such as security vulnerabilities. Most OSS
today employs shared identifiers called Common
Vulnerabilities and Exposures (CVE)*1 [2] to manage
the impact of vulnerabilities and how they can be cor-
rected. Fixing vulnerabilities typically involves a
three-step process: (1) the party having discovered
the vulnerability issues a confidential report detailing
the vulnerability to the security contact team; (2) core
developers in the security contact team devise a fix
for the vulnerability working in a closed environ-
ment; (3) and finally, the fix is made available, and
the CVE is announced to the general public. There-
fore, when a company lets its own developers join the

*1	 CVE: The standard for information security vulnerability names
for managing vulnerability fixes, identifying publicly known vul-
nerabilities with standard identifiers, and notifying users.

NTT’s Contributions to OSS
Upstream First Development
Kota Tsuyuzaki and Takeshi Yamamuro

Abstract
Open source software (OSS) has been used in various information technology systems in recent years.

OSS is developed by the collaborative OSS community, which consists of many companies and indi-
viduals. Additionally, several large cloud service providers such as Google and Facebook have released
their own software used in their services as open source to continue to improve the software in the OSS
community. We explain here the advantages of companies developing software as OSS and the signifi-
cance of companies’ contributions to OSS communities. In addition, we also describe two examples of
the NTT laboratories’ involvement in OSS communities.

Keywords: OSS, OpenStack, Apache Spark/Hivemall

Feature Articles: OSS Activities in Era of Internet of Things,
Artificial Intelligence, and Software-defined Everything

2

Feature Articles

Vol. 16 No. 2 Feb. 2018

security contact team responsible for developing the
OSS, it brings the company—as a stakeholder—on
board so that members are clearly aware of the secu-
rity vulnerability and can help come up with a solu-
tion that fixes the vulnerability when the issue is dis-
closed. Note that if there is an insufficient number of
core developers working on a solution in step (2), the
progress made during that process will be slow in
addressing the vulnerability. Therefore, taking the
lead in supporting the core developers of the OSS
ultimately benefits the company, as it helps to safe-
guard the security of their own corporate systems.

1.2 �Second strategy: avoiding conflict with the
community version

There may be instances when a company would
like to use OSS, but the software lacks some critical
capability that the company requires. When this capa-
bility is truly indispensable, the quick and easy solu-
tion might be simply to develop the features in house.
In this approach (Fig. 1(a)), the company forks the
community software and then develops its own fea-
tures for its product. However, because OSS is devel-
oped by an open community, the application pro-
gramming interface (API) specifications can be
changed in a specific time period. In order to manage

the synch with the latest community version, the
company has to constantly upgrade that portion of the
software that it modified. This is not always easy,
especially in the case of OSS communities that are
very active, where the portion to upgrade could
include tens of thousands or even hundreds of thou-
sands of changed lines of code. Maintaining both the
upstream changes and the in-house code would incur
an enormous cost much greater than just keeping the
firm’s own in-house modified version of the software
up and running.

The way to avoid this situation is to develop the
features as OSS community code and give it back to
the community. Software modification costs can be
held down by approaching the requests early on at the
initial idea stage. This approach may reduce the
instances of the software conflicting with other fea-
tures proposed by other companies in the community.
These activities make it possible to minimize differ-
ences between a company’s added features and the
community version of the software that includes sig-
nificant bug fixes, and it will make it far easier to
integrate upstream work into a company’s system.
Moreover, developing engaging functional features
as OSS will enable the feature to be enhanced by
other companies. This kind of collaborative approach

Fig. 1. Difference between in-house development using OSS and upstream first approach.

Features and bug fixes from other companies

Community version

Corporate version

Corporate version

Fork and begin development
of additional functions. Completed!

Continue development of community version at upstream.

Release version

Community version

Propose the feature
at the conference. Consensus,

adoption
Completed!

Rebase the original version.

(a) In-house development using OSS

R-1 R-2 R-3 R-4

Major change in API
between R-3 and R-4!!

A major difference has come
between them.

R-1 R-2 R-3 R-4

Spec
adjustment

Negotiate proposal to avoid conflicts
with previously proposed specs.

New functionality in corporate version
depends on the newest community version.

(b) Upstream first development Major change in API
proposed between

R-3 and R-4!!

3 NTT Technical Review

Feature Articles

to OSS development that minimizes conflicts among
software features in advance is the way of upstream
first, and it results in OSS products that benefit the
entire community of OSS users (Fig. 1(b)).

This is why companies practice upstream first,
develop new software features in collaboration with
OSS communities, and increasingly enjoy the advan-
tages of software quality assurance. The NTT Group
is involved in the upstream first approach through
active participation in several OSS communities
including Linux, OpenStack, and Apache. In the next
two sections, we describe how the NTT Software
Innovation Center accomplishes an upstream first
approach in dealing with two open source projects:
OpenStack Swift and Apache Spark/Apache Hive-
mall.

2. OpenStack Swift

OpenStack [3] is an OSS platform maintained by
the OpenStack Foundation for implementing infra-
structure-as-a-service (IaaS)*2 solutions. OpenStack
consists of several components; an overview is shown
in Fig. 2. Development policies for each component
are discussed at two development conferences that
are held biannually: OpenStack Summits, with cur-
rent attendance in excess of 5000 people, and Project
Team Gatherings (PTGs)*3. Day-to-day development
work is conducted by developers in the globally dis-
tributed community via Internet Relay Chat (IRC)
and mailing lists. OpenStack is released around six-
month cycles, a significantly shorter cycle time than

products released by other OSS communities.
OpenStack Swift [4] is an OpenStack component

that implements storage technology called object
storage. Swift object storage provides certain fea-
tures to ensure data durability: data are stored redun-
dantly; redundancy is monitored within the system;
and Swift works to automatically replicate the data in
case of a hard drive failure to avoid loss of data.
OpenStack Swift has been robust and stable since its
release in the first rollout of OpenStack in 2010. Con-
sequently, Rackspace, one of the major players of
OpenStack, initially employed the project as a com-
mercial offering.

NTT Group companies have also conducted several
case studies on OpenStack [5]. In case studies using
OpenStack Swift, the NTT labs have proposed vari-
ous functional improvements and bug fixes and have
made other contributions to the community. Having
gained the trust and respect of the community through
these activities, the NTT labs have built a community
action team that includes one of the core developers
in the OpenStack Swift community, and are actively
involved in OSS research and development (R&D).

Here, we highlight the NTT labs’ involvement in
the erasure coding scheme*4 for OpenStack Swift, an
area where NTT’s input has been especially influen-
tial. OpenStack Swift released a powerful new data

Fig. 2. OpenStack components and Swift.

Bare metal

Compute Storage SWIFT

Virtual machines Containers Object storage

Network

File storage Block storage

OpenStack APIs

APP APP APP APP

Dashboard

Monitoring

User application

OpenStack
Control Plain
(IaaS)

*2	 IaaS: Infrastructure as a service, a form of cloud computing that
provides virtualized computing resources over the internet.

*3	 PTG: The Project Teams Gathering is an event held every six
months where OpenStack developers decide the content of the
next development cycle.

4

Feature Articles

Vol. 16 No. 2 Feb. 2018

storage scheme called erasure coding in 2015. This
new scheme helped to significantly reduce the cost of
deploying Swift at NTT Group companies.

The NTT labs have experimented with the upstream
first strategy since the beginning of development, and
they took the lead in proposing fixes and features to
the OpenStack community. For example, we contrib-
uted a significant bug fix [6] to the erasure code
library. Although the bug was not a security vulnera-
bility, it was a library error that could have resulted in
a catastrophic loss of stored data. The NTT labs dis-
covered it during the verification process. Our com-
munity action team with a core developer analyzed
the problem immediately, quickly verified the library
bug responsible, and came up with a fix [7]. These
efforts not only preserved the quality of our own
products, but also helped save considerable data of
many other users in the OpenStack Swift community.

In another case involving the development of fea-
tures, NTT made a major contribution through its
development of globally distributed erasure coding.
When disaster recovery (DR) clusters*5 are built with
OpenStack Swift across multiple datacenters, global
cluster functionality is used to ensure high perfor-
mance. However, this presents a serious problem
when this functionality is used together with an era-
sure coding scheme; it does not guarantee there will
be sufficient data stored in a datacenter, and there is a
risk that data might be unavailable if the network con-
nection between datacenters is blocked or interrupted.

The NTT labs contributed the globally distributed
erasure coding scheme to resolve this issue. A stable
version of the scheme was released in August 2017
just two years after it was first proposed in August
2015, and it was highlighted as a major new func-
tional capability in the new features in the OpenStack
community [8]. During the two-year development
period for this new scheme, roughly 180,000 lines of
code were altered for OpenStack Swift overall, but
OpenStack Swift was able to smoothly merge the
15,000 lines of code in the globally distributed era-
sure coding due to the application of the upstream
first strategy in the initial idea proposal and the code
development. Furthermore, as the result of upstream
first development, the OpenStack Swift community is
now considering further work on the feature to make
it more convenient and efficient, and this will also
benefit NTT Group companies.

Illustrating the use case, making it beneficial as the
core technology, and achieving upstream first will
enable other companies to join the development, and
it will result in the growth of the software, the code,

and even the community much like a living thing. Of
course, this greatly benefits NTT as well.

It is apparent from these examples that it is impor-
tant to maintain a healthy OSS community in order to
develop new functional capabilities and achieve high
quality. Needless to say, this is all vitally important to
ensure further quality improvement of an individual
company’s own products.

3. Apache Spark/Apache Hivemall

Apache Spark [9] is an OSS distributed parallel
processing framework developed by AMPLab, a
research group at the University of California, Berke-
ley. Apache Spark includes not only a core compo-
nent for distributed parallel execution, but also many
useful libraries for SQL, machine learning, and
streaming, as shown in Fig. 3. Apache Hivemall [10]
is an OSS distributed machine learning library
accepted as an incubator project by the Apache Soft-
ware Foundation (ASF) in October 2016. Makoto Yui
at Treasure Data, Inc. is an original author of Hive-
mall; NTT developers also became involved in the
community activity at the beginning of 2016. Finally,
the developers both at Treasure Data and NTT pro-
posed Hivemall to the ASF. Apache Hivemall can be
used on widely used distributed processing frame-
works such as Spark. Hivemall incorporates state-of-
the-art distributed machine learning algorithms,
which is different from existing machine learning
libraries.

The Spark community is growing rapidly, and over
3000 participants from all over the world attended the
recent Spark Summit held in June 2017. NTT is also
involved in the development and is committed to the
community. For example, it has enhanced APIs for
porting Hivemall functions into Spark and has made
a number of bug fixes and improvements in Catalyst.
Catalyst is an optimizer component that affects many
applications running on Spark, and it will likely play
a significant role in NTT Group’s use cases in the
future. Therefore, we have stepped up efforts to fix
bugs and enhance the performance of Catalyst. The

*4	 Erasure coding scheme: A reliable data protection scheme imple-
mented in Swift that reduces the amount of data stored on physi-
cal disks. Original data are segmented into fragments and encod-
ed with redundant data pieces and stored across a set of different
locations or storage media.

*5	 DR cluster: A disaster recovery cluster is a system configuration
in which hardware is deployed at multiple geographically dis-
persed sites, so if one (or several) datacenters fail due to a natural
disaster or other unforeseen event, the overall system remains up
and running.

5 NTT Technical Review

Feature Articles

Spark community recently took a step forward to sup-
port the use of graphics processing units (GPUs) in a
resource scheduler. Spark currently only uses central
processing unit (CPU) cores as resource scheduling
units; a job scheduler splits a user query into tasks
and assigns them to CPU cores. With the increasing
popularity of deep learning and its need for comput-
ing resources, it is important to officially discuss
GPU support in Spark native components.

The development of Apache Hivemall is progress-
ing as Makoto Yui and other developers continue to
implement a range of sophisticated machine learning
algorithms and utility functions for feature engineer-
ing. In these activities, NTT is responsible for porting
Hivemall functions into Spark and implementing use-
ful and efficient functionalities that users actively
request and Spark does not provide. Some of these
functionalities are not implemented by Spark because
they do not comply with the Spark development pol-
icy or are too complicated to implement as first-class
Spark functionalities. With the valuable experience
we have obtained through these OSS activities, we
are currently trying to provide a scalable and highly
efficient distributed parallel framework with Spark
and Hivemall.

We believe that being involved in OSS communi-
ties such as Spark and competing with distinguished
developers in the world will not only help us keep up
with existing OSS products but will also open the
way to discover innovative next-generation technolo-
gies that will emerge in future. We are now moving
forward to apply Spark and Hivemall into realistic
use cases with NTT Group companies. We plan to
develop robust technologies that are widely used by
NTT Group companies while building complemen-

tary relationships with OSS communities.

4. Future work

This article highlighted two major OSS projects
that illustrate NTT’s deep involvement in a range of
worldwide efforts through its active participation in
various OSS communities. OSS development is
growing not simply because companies are eager to
adopt free software for their own private purposes,
but rather because involvement in such communities
provides a way for companies to achieve success and
grow with the communities. The NTT labs are lever-
aging open source through an upstream first approach
in OpenStack, Apache Spark, Apache Hivemall, and
other OSS projects. We are committed to ongoing
R&D that contributes to NTT Group companies
while benefiting the OSS communities to which we
belong.

References

[1]	 R. Bryant, “OpenStack: Upstream First,” Aug. 2016.
	 https://www.slideshare.net/tesoracorp/openstack-upstream-first
[2]	 CVE, https://cve.mitre.org/
[3]	 OpenStack, https://www.openstack.org/
[4]	 Swift, https://www.openstack.org/software/releases/ocata/components/

swift
[5]	 Press release issued by NTT DATA on January 15, 2015 (in Japanese).

http://www.nttdata.com/jp/ja/news/release/2015/011500.html
[6]	 K. Tsuyuzaki, Bug report, OpenStack Object Storage (swift), Bug

#1639691, Nov. 2016.
	 https://bugs.launchpad.net/swift/+bug/1639691
[7]	 Corrupted fragment report, https://github.com/01org/isa-l/issues/10
[8]	 Press release issued by OpenStack on August 30, 2017, “OpenStack

Pike Delivers Composable Infrastructure Services and Improved
Lifecycle Management.”

	 https://www.openstack.org/news/view/340/openstack-pike-delivers-
composable-infrastructure-services-and-improved-lifecycle-management

Fig. 3. Spark and Hivemall software stack.

Spark Core (RDD) Distributed parallel executorSpark

DataFrame/Dataset User APIs

Catalyst Query optimizer

Hivemall

Hadoop Cassandra Hive ElasticsearchMySQLJSON

Data source API

CSVPostgreSQLHBase

Scala Java Python R

Spark SQL
SQL

ML pipelines Structured
streaming GraphFrames

https://www.slideshare.net/tesoracorp/openstack-upstream-first
https://cve.mitre.org/
https://www.openstack.org/
https://www.openstack.org/software/releases/ocata/components/swift
https://www.openstack.org/software/releases/ocata/components/swift
http://www.nttdata.com/jp/ja/news/release/2015/011500.html
https://bugs.launchpad.net/swift/+bug/1639691
https://github.com/01org/isa-l/issues/10
https://www.openstack.org/news/view/340/openstack-pike-deliverscomposable-infrastructure-services-and-improved-lifecycle-management

6

Feature Articles

Vol. 16 No. 2 Feb. 2018

[9]	 Apache Spark, https://spark.apache.org
[10]	 Apache Hivemall, https://hivemall.incubator.apache.org

Trademark notes
All brand names, product names, and company names that appear in this
article are trademarks or registered trademarks of their respective owners.

Kota Tsuyuzaki
Software Engineer, Cloud Solution Project,

NTT Software Innovation Center.
He received an M.E. in information engineer-

ing from Waseda University, Tokyo, in 2010.
Since joining NTT in 2010, he has been develop-
ing distributed storage systems. He has been
working on OpenStack Swift for approximately
five years and has been a member of the Swift
Core Team since June 2015.

Takeshi Yamamuro
Research Engineer, Distributed Computing

Technology Project, NTT Software Innovation
Center.

He received an M.E. from the Faculty of Sci-
ence and Technology, Sophia University, Tokyo,
in 2008 and joined NTT the same year. He has
since been working on database management
systems. His research interests include compres-
sion and hardware-aware algorithms (e.g.,
SIMD, NUMA and GPU). He received the IPSJ
Yamashita SIG Research Award from the Infor-
mation Processing Society of Japan (IPSJ) in
2015. He is a member of IPSJ and the Database
Society of Japan.

https://spark.apache.org
https://hivemall.incubator.apache.org

