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1.   Introduction

The maximum capacity of practical single-mode 
fiber (SMF)-based transmission systems is thought to 
be around 100 Tbit/s per fiber due to the fiber fuse 
phenomenon [1]. Efforts are underway to break the 
capacity limit of SMF, and space-division multiplex-
ing (SDM) is one of the most active areas of research 
intended to achieve this [1, 2]. The European Union 
(EU)-Japan coordinated research and development 
(R&D) project named Scalable And Flexible optical 
Architecture for Reconfigurable Infrastructure 
(SAFARI) was launched in 2014 and has achieved 
many of the world’s most significant advances in 
realizing Pbit/s/fiber-class and over 1000-km-dis-
tance programmable optical networks. For example, 
high-core-count single-mode multicore fiber (MCF) 
with spatial multiplicity of over 30 was demonstrated 
in the project [3], and it was used to achieve dense-
SDM (DSDM) transmission with Pbit/s/fiber-class 

capacity [4].
If MCF-based transmission is to become feasible 

for wide-area transport networks, the effect of inter-
core crosstalk (XT) must be considered. It is an 
important factor that occurs only in MCF and that 
limits the transmission distance and the modulation 
formats that can be used. A core in an MCF is affect-
ed by the XT generated in its adjacent cores, and the 
XT impairment accumulates as the transmission dis-
tance increases. In addition, the XT in a core will 
change over time in response to changes in optical 
path assignments to its adjacent cores. Therefore, 
careful consideration of XT is essential, especially 
for long-distance and dynamic MCF transport net-
works.

In this article, we report the recent achievement of 
the SAFARI project, a single-mode MCF transport 
network that offers XT-aware and programmable 
optical paths with XT monitoring [5]. We used the 
testbed to demonstrate an XT-aware traffic engineering 
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use case, in which optical paths were adaptively  
(re)configured subject to consideration of inter-core 
XT with the help of a software-defined networking 
(SDN) controller.

2.   MCF transport network architecture

The proposed XT-aware MCF transport network 
architecture is shown in Fig. 1. This network contains 
a mixture of MCFs and SMFs, as the former will 
incrementally replace the latter. The network con-
nects three reconfigurable optical add-drop multi-
plexers (ROADMs) using three SMF/MCF links that 
include inline amplifiers. Of particular note is the fact 
that the MCF links contain FI/FO (fan-in/fan-out) 
devices and XT monitors to estimate the inter-core 
XT values of each link. The transponders have the 
ability to adaptively select the modulation formats 
from among quadrature phase-shift keying (QPSK), 
8 quadrature amplitude modulation (8QAM), and 
16QAM.

The SDN controller collects transmission perfor-
mance data such as inter-core XT, Q-factor (quality 
factor), and optical signal-to-noise ratio (OSNR) val-
ues at regular intervals from each node. The SDN 
controller uses the monitored values to set the tran-
sponders to an appropriate modulation format and/or 
configure the ROADMs to change optical path routes.

3.   XT-aware optical path configuration scheme

This section describes how XT is taken into consid-
eration in optical path configuration. The initial step 
prior to optical path configuration is to associate XT 
values with suitable modulation formats, as shown in 
Fig. 2. In long-distance MCF transmission, transmis-
sion quality (e.g., Q penalty) mainly depends on the 
XT induced in the MCF link. If a certain level of 
allowable Q penalty due to XT is set (typically < 1 dB 
as shown in Fig. 2), the XT threshold for each modu-
lation format is automatically determined.

In the second step, the XT values are monitored 
continuously or periodically during operation of the 
transport network because it will change dynamically 

Fig. 1.   XT-aware MCF transport network architecture with SDN controller.
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over time as optical path assignment conditions in 
adjacent cores change. In addition, to ensure high-
quality network services, in-service XT measurement 
is necessary, which means that the XT monitoring 
method should not affect or interrupt the wavelength-
division multiplexing (WDM) signals. Our in-service 
XT measurement scheme has been adopted in the 
network [6].

In the final step, the SDN controller commands the 
transponders and ROADMs to (re)configure the 
modulation format and the optical path route. The 
modulation format is determined by plotting the mea-
sured XT value, as in Fig. 2, and selecting the format 
with the highest modulation level.

4.   Testbed setup and evaluation results

We constructed a testbed in order to evaluate the 
system. The testbed setup and the results of our 
experiments are described in this section.

4.1   Use case
The constructed testbed is shown in Fig. 3. The 

testbed is designed to demonstrate XT-aware traffic 
engineering, shown in Fig. 4(a), as a representative 
use case where XT-awareness is a key attribute. First, 
for this use case, we assume a low priority optical 
path established on a low-XT MCF span (Link A in 
Fig. 4(a)). Since the XT is low, the span supports 
16QAM. Next, we assume that a request for a high 

priority optical path arrives that needs to be served 
using Link A. This forces the route of the low priority 
path to be changed to a less favorable route (Link 
B-C) to make room for the newly arrived high prior-
ity path. Since the XT level of the new route (Link 
B-C) is higher than that acceptable for 16QAM, a 
lower-order modulation format is selected, that is, 
QPSK or 8QAM.

4.2   Testbed setup - transmission line
The right side of Fig. 4(c) represents the DSDM 

transmission line. It consists of a 51.4-km 32-core 
single-mode MCF [3], a 32-core erbium-ytterbium 
doped fiber amplifier (EYDFA) [7], and in-service 
inter-core XT monitors [6].

To model different levels of XT and their effects on 
an MCF network, sets of cores were connected in 
series in various combinations. As shown in Fig. 4(b) 
and Fig. 4(c), a set of eight concatenated cores (blue-
colored cores in Fig. 4(b)) surrounding several high 
input power cores was used to represent a 411.2-km 
high-XT line. Another set of eight concatenated cores 
around the outer perimeter of the fiber (orange-col-
ored cores in Fig. 4(b)) yielded a 411.2-km low-XT 
line. Further, a set of two cores (red-colored cores in 
Fig. 4(b)) represented a 102.8-km line with minimum 
XT. This arrangement shows how different deploy-
ment and operation scenarios can be tested.

For XT monitoring, two pilot tones are combined 
with the input WDM signal by a 2 x 2 coupler for 

Fig. 3.   Constructed testbed.
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each transmission line, and the output signal is tapped 
and its spectrum is measured using an optical spec-
trum analyzer (OSA).

4.3   Testbed setup - SDN controller
The SDN controller in the testbed adopts the hier-

archical layer model as shown on the left side of Fig. 
4(c). The MCF transmission line is controlled using 
the SDN controller via its user interface. We assume 
the adoption of OpenDaylight [8], a widely used 
open-source SDN controller. However, it lacks sev-
eral specific functions required for the use case, for 
example, identifying the MCF core number, collect-
ing XT values, and setting the modulation format, so 
we added an intermediate function named Mediator 
that can issue commands to implement these func-

tions to the ROADM and transponders.
The line controller controls and manages the pro-

grammable transponders and the MCF transmission 
line. This implementation enables (re)configuration 
of the modulation format, wavelength, laser on/off, 
and performance monitoring. The controller also col-
lects the monitored XT values from the OSAs and 
forwards them to the SDN controller to determine the 
modulation format.

4.4   Results
The DWDM (dense-WDM) spectrum in Link A 

measured using the OSA after transmission is shown 
in Fig. 5(a). The inter-core XT outside both ends of 
the WDM signal bandwidth were estimated by com-
paring the optical power differences between the  

Fig. 4.   Use case and experimental setup.
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corresponding reference and XT pilot tones. The XT 
at the signal wavelength was estimated by linear 
interpolation of the estimated XT values at the WDM 
spectral edges. For example, we can see that the XT 
range of Link A is estimated to be between –25.7 dB 
and –24.2 dB by taking the differences between refer-
ence and XT pilot tones at the respective WDM spec-
tral edges (the difference between λS2 and λS1 at a 
short wavelength, and the difference between λL2 and 
λL1 at a long wavelength) (Fig. 5(b)). By linearly 
interpolating these values, we can estimate that the 
XT at the wavelength used by the test signal in Link 
A is about –24.9 dB. Similarly, XT at the same wave-
length in Link B is estimated to be about –17.7 dB 
(Fig. 5(c)). By comparing these estimated XT values 
with those in Fig. 2, which represent the relationship 
between Q penalty and XT, we can see that QPSK, 
8QAM, and 16QAM formats are available for Link 
A, while QPSK is the only available modulation for-
mat for Link B.

The real-time measurement data for a low priority, 
16QAM path initially routed across the two-core 

102.8-km MCF link (Link A) having low XT is 
shown in Fig. 6. Since the SDN controller continu-
ously collects inter-core XT of the low priority path 
from the OSA, we can see that the inter-core XT of 
the low priority path is initially kept low. When the 
request for a high priority 16QAM path arrives, the 
low priority path is pre-empted by the high priority 
path and rerouted to the eight-core high-XT MCF 
link and 400-km SMF (Link B-C). Accordingly, the 
modulation format of the low priority path was 
changed to QPSK. After waiting a few minutes for the 
change in modulation format to be completed, the 
low priority channel was successfully switched to the 
new route, and all established paths showed stable 
error-free operation after forward error correction 
(FEC) decoding.

5.   Conclusion

We presented the concept of the single-mode MCF 
transport network orchestrated by an SDN controller. 
To suppress the effect of inter-core XT impairment, 

Fig. 5.   Measured XT monitoring performance in the testbed.
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which is the main factor limiting the transmission 
distance and which modulation formats can be used, 
we applied our SDN-supported XT-aware optical 
path control scheme with in-service XT monitoring. 
We constructed an MCF transport network testbed 
around a 32-core MCF and EYDFA, programmable 
transponders, 3-degree ROADM, and an SDN con-
troller. An XT-aware traffic engineering scenario was 
examined as a use case, and the results confirmed that 
the SDN controller was able to dynamically change 
both the modulation format and the optical path 
route.

Some technological advances are required in order 
to further improve the feasibility of the MCF trans-
port network. These include an MCF-compatible 
optical node that can connect to multiple MCFs and 
switch optical paths at multi-granular levels (e.g., 
fiber, core, wavelength), and an efficient optical path 
assignment algorithm that calculates optimal param-
eters such as route, core, wavelength, and modulation 
format.
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