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1.   Introduction

The continued growth of data traffic in communica-
tions systems has resulted in the need to find ways to 
increase data rates of optical transmission systems 
[1]. Digital signal processors (DSPs) play key roles in 
current high-speed transmission systems [2, 3]. Func-
tions of the DSPs include high-order modulation, 
pulse shaping, equalization, and dispersion compen-
sation, which are essential for achieving high data 
rates with high spectral efficiency. 

In a DSP-based transmitter, the analog bandwidth 
of digital-to-analog converters (DACs) is a key factor 
to determine the achievable data rate. The DACs used 
in commercial transmitters today are fabricated on 
silicon complementary metal-oxide semiconductor 
(CMOS) platforms and integrated with DSPs mono-
lithically [2, 3]. Those CMOS DACs have a rather 

moderate analog bandwidth of ~30 GHz, which is 
one of the factors limiting the data rate. 

DACs based on compound platforms such as indi-
um phosphide (InP) or SiGe (silicon-germanium) 
provide larger bandwidth [4–6], but they consume 
more power. Compound DACs also pose some imple-
mentation challenges because the DSP will continue 
to be based on CMOS technology. This is why there 
is a strong need to develop technologies to extend the 
bandwidth using existing CMOS DACs. 

We have developed a digital-preprocessed analog-
multiplexed DAC (DP-AM-DAC) that is a promising 
potential solution in this context [7–10]. The DP-
AM-DAC consists of a digital preprocessor, two sub-
DACs, and an analog multiplexer (AMUX) and func-
tions as a DAC with an analog bandwidth of almost 
twice that of each sub-DAC. We have generated sig-
nals with bandwidths of up to ~60 GHz with CMOS 
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sub-DACs and an AMUX based on an InP hetero-
junction bipolar transistor (HBT). Unlike other 
bandwidth-extension technologies that use analog 
mixers [3, 11], the DP-AM-DAC has a symmetric 
configuration with respect to the two sub-DACs and 
so makes it easier to balance the two branches. In this 
article, we review our DP-AM-DAC and the high-
speed transmission experiments conducted with it.

2.   Principle

The configuration and principle of the DP-AM-
DAC is shown in Fig. 1. It consists of a digital prepro-
cessor, two sub-DACs, and an AMUX [7–10]. When 
the bandwidth of the sub-DACs is fB/2, we can obtain 
an arbitrary signal with a bandwidth up to around fB 
(twice that of the sub-DACs) as the final output from 
the AMUX. The schematic spectra in Fig. 1 represent 
the principle of the DP-AM-DAC, in which the 
AMUX is driven at fclk = fB [7]. 

First, the digital representation of the target signal 
with a bandwidth up to fB is input to the preprocessor. 
The preprocessor weaves the information of the tar-
get signal into two digital sub-signals with a corre-
sponding bandwidth of fB/2 or less so that the sub-
DACs can handle them without loss of information. 
Specifically, the preprocessor separates the input sig-
nal into low- and high-frequency components—
respectively represented by red and blue—and then 
flips the high-frequency component around fB/2 in 
the frequency domain. Finally, the processor adds the 
flipped high-frequency component to the low-fre-
quency component with a specific amplitude ratio 
and complementary phases to make the two respec-
tive sub-signals.

The sub-DACs convert the digital sub-signals into 

the analog sub-signals, which pass alternately 
through the AMUX at a clock frequency of fclk. In the 
frequency domain, this alternation, or multiplexing, 
corresponds to a superposition of the sub-signals 
themselves and their images (up-converted copies) 
generated around fclk, where the phases of the images 
for the two sub-signals are complementary to each 
other. As seen in Fig. 1, the superposition results in 
the reconstruction of the target signal in the frequency 
region of 0 < f < fB. The residual image of the high-
frequency component in the frequency region of fB < 
f < 3fB/2 can be removed by a low-pass filter. The 
principle explained above is what we call the type-I 
DP-AM-DAC. We have also developed the type-II 
model, which has the same hardware configuration as 
the type-I model but uses a different preprocessing 
algorithm so that we can reduce the required fclk by 
half and suppress the residual image [8]. 

3.   AMUX characteristics

The key component in the DP-AM-DAC is the 
AMUX, which we designed and fabricated using our 
in-house 0.5-μm-emitter InP HBT technology [12]. 
As mentioned above, the AMUX is a linear high-
speed selector that makes two input signals pass 
through it alternately at the clock frequency without 
any regeneration. Time-domain waveforms we mea-
sured to verify the AMUX are shown in Fig. 2. We 
input a 1-GHz sinusoidal wave to one input port 
while applying direct current (DC) voltage to the 
other and varied the clock frequency. The obtained 
output waveforms show that the AMUX selects the 
two inputs alternately at the clock frequency, as 
designed.

The static frequency responses of the AMUX module 

Fig. 1.   Configuration and principle of DP-AM-DAC (type I).
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are shown in Fig. 3. The response is measured by 
applying DC voltage to the clock port to select and 
deselect the input analog signal under test to measure 
the through and isolation characteristics, respectively. 
Up to the measured frequency range of 50 GHz, the 
through loss is less than 3 dB, while the isolation (the 
difference between the two curves) is more than 20 
dB.

4.   Transmission results

The DP-AM-DAC was first demonstrated in a high-
speed intensity-modulated direct-detection (IMDD) 
transmission, in which we employed Nyquist-shaped 
80-Gbaud (160-Gbit/s) four-level pulsed amplitude 
modulation (PAM4) [7]. The experimental setup is 
shown in Fig. 4. We used two channels of a CMOS-
based arbitrary waveform generator (AWG) as the 
sub-DACs with an analog 3-dB bandwidth of ~20 
GHz. The signal was generated using the type-I DP-

AM-DAC at fclk = 43.3 GHz. As the optical transmit-
ter, we used an O-band (1.3-μm) externally modulat-
ed laser with a modulation bandwidth of > 55 GHz 
[13]. The optical signal was transmitted over 20-km 
standard single-mode fiber (SSMF) and then ampli-
fied by a fiber amplifier and received by a photodi-
ode. The DSP, including the preprocessor of the DP-
AM-DAC, the receiver-side filter, and an adaptive 
equalizer (AEQ) was emulated by an offline personal 
computer. 

The electrical spectra of the output signals from  
the two sub-DACs and the AMUX are shown in 
Fig. 5(a)–(c). Although the signals from the sub-
DACs have a bandwidth of only ~22 GHz, that from 
the AMUX includes a rectangular waveform with a 
bandwidth of ~40 GHz, which corresponds to the 
target 80-Gbaud Nyquist PAM4 signal. The residual 
image at > 46 GHz observed in the AMUX output 
was removed by the receiver-side matched filter in 
this experiment. 

The eye diagram of the 80-Gbaud (160-Gbit/s) 
PAM4 signal after transmission over 20-km SSMF 
and through the digital matched filter and the AEQ is 
shown in Fig. 6. The bit error rate (BER) was 6.2 x 
10−3. This result corresponds to the net data rate of 
142.9 Gbit/s, assuming the use of 12%-overhead 
(OH) hard-decision forward error correction (FEC) 
code [14].

We also demonstrated a higher net data rate of 250 
Gbit/s with the type-II DP-AM-DAC [8]. The setup 
was similar to the one shown in Fig. 4, but the sub-
DACs (AWG) were upgraded to those with an analog 
3-dB bandwidth of ~32 GHz, and the fclk was changed 
to 37.5 GHz. With the type-II principle, we can gen-
erate signals with the analog bandwidth up to  

Fig. 2.    Time-domain waveforms output from the AMUX multiplexing a 1-GHz sinusoidal wave and DC voltage at clock 
frequencies of 0, 5, 25, and 50 GHz.
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2fclk = 75 GHz, although the bandwidth used in the 
experiment was limited to 62 GHz by the bandwidth 
of the DSO (digital storage oscilloscope). We 
employed discrete multitone (DMT) modulation [15] 
to efficiently utilize the available bandwidth. The 
electronic spectrum and constellations of the received 
DMT signal at the total bit rate of 300.12 Gbit/s after 
transmission over 10-km SSMF are shown in Fig. 7. 
The total BER was 2.63 x 10−2, which is lower than 
the threshold of the 20%-OH soft-decision FEC code 
[16], and it corresponds to the transmission at a net 
data rate of 250 Gbit/s.

In addition to the results described above, we have 
reported various high-speed transmission experi-
ments utilizing DP-AM-DACs, including long-haul 
digital coherent transmission [17–20].

Fig. 4.   Experimental setup for high-speed IMDD transmission experiments using the DP-AM-DAC.
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Fig. 5.    Electronic spectra of output signals from (a) sub-DAC channel 1, (b) sub-DAC channel 2, and (c) AMUX measured 
in the 80-Gbaud PAM4 transmission experiment.
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5.   Conclusion

With the DP-AM-DAC, we can overcome the band-
width limitation imposed by the analog bandwidths 
of CMOS DACs. The combination of the digital pre-
processor, two CMOS sub-DACs, and the high-speed 
AMUX enables us to generate arbitrary signals with 
a bandwidth nearly twice that of each sub-DAC. This 
technology is promising for use in future ultrahigh-
speed optical transmitters for various application 
fields, including short-reach IMDD and long-haul 
digital coherent systems.
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300.12-Gbit/s DMT signal after 10-km SSMF 
transmission.
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