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1.   Importance of ultralow latency operations

Improvements are still being achieved in the pro-
cessing capacity of processors by increasing the num-
ber of cores and enhancing parallelization. However, 
the frequency response has leveled off, as one can see 
in Fig. 1(a) [1]. In other words, basic throughput con-
tinues to improve through integration and paralleliza-
tion, but reductions in latency or delay have reached 
a plateau. Particularly in situations requiring spinal 
reflexive speed response, this calls for a significant 
technological breakthrough in the development of 
arithmetic processors capable of responding at super 
high speed. 

2.   Introduction of optical technology in 
arithmetic chips

Research and development in optical computing 
focused on achieving ultrahigh-speed calculations 
exploiting the immense broadband of light continued 
throughout the 1980s. The problem with this 
approach is that optical transistors are quite large and 
vastly inferior to complementary metal oxide semi-
conductor (CMOS) transistors in density, power con-
sumption, cascadability, and other factors. It is not 
surprising that research in this area fell off sharply in 

the 1990s. At the same time, however, optical com-
munications has proven vastly superior not only for 
long-haul communications but also in ongoing 
research to exploit the vast bandwidth of light in 
developing optical interconnects within and between 
chips. Today we see a marriage between light and 
electronics—optoelectronics—that exploits light for 
information transport and electronic circuitry for 
information processing. 

More recently we have seen remarkable progress in 
nanophotonic technology as new solutions have been 
found dealing with problematic issues that plagued 
optical and optoelectronic computing research in the 
past. In photonic crystal technology, for example, 
optical elements have been significantly downscaled 
to a mere 1/1000th the size they were a decade ago 
with corresponding decreases in power consumption, 
which brings optical elements into close competition 
with CMOS circuits. It is time that we reconsider the 
prevailing division between optical and electronic, 
with optical used primarily for transport and elec-
tronic for information processing. 

3.   Arithmetic chip delay factor

The frequency response rate-limiting issue men-
tioned earlier can be attributed to resistance (R) and 
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capacitance (C) in the wiring path of CMOS circuits. 
The gate switching time of CMOS transistors has 
been sharply reduced by advances in semiconductor 
micro-fabrication technology, but the total delay of 
CMOS gates levels off at around 10 ps due to R and 
C in the transistor interconnects, as shown in Fig. 1(b) 
[2]. Moreover, R and C in the wiring only increases 
as transistors become more compactly integrated and 
wiring is stretched thinner and longer, which further 
increases the latency of actual circuits. 

Electronic circuits also inevitably exhibit a certain 
amount of latency due to their structure. One of the 
most widely used circuit configurations is the AND/
OR logic circuit shown in Fig. 2(a). The output signal 
from one logic gate drives the following logic gate, so 
obviously, the latter gate cannot do anything until the 

output signal from the previous gate arrives. The wait 
time involved in these gate operations is proportional 
to the number of gates, which makes for substantial 
arithmetic delay. 

4.   Arithmetic chip with optical and electronic 
elements integrated at transistor level

One solution to wiring-induced latency is on-chip 
optical communications. This is essentially a pho-
tonic technology for conveying information between 
cores, but here we extend this approach to the transis-
tor level as a solution to the architecture-induced 
latency problem. In trying to come up with the ideal 
circuit configuration, we can find a valuable clue in 
the field of electronics. A schematic pyramid-shaped 
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tree circuit based on a binary decision diagram 
(BDD) [3] is shown in Fig. 2(b). We assume a con-
figuration in which “1” is output from the signal 
source located in the leaf part of the tree at the base of 
the pyramid, and Boolean operations are performed 
by selecting either signal source “1” or no signal 
source “0” depending on the combination of external 
inputs (x1, x2…). Various methods for simplifying 
BDDs have been proposed, and if these methods can 
be applied to the BDD-based circuit, the number of 
switches could be greatly reduced. 

This type of circuit configuration is called a pass 
transistor logic circuit. The signal passing through 
the circuit is called a carry, and an operation is per-
formed by steering the carry flow with 2 × 1 switches. 

Here, we refer to the optical version of this struc-
ture as an optical pass gate logic circuit, and we 
replace the electronic switches with 2 × 1 and 2 × 2 
optical gates. In this architecture, light is used as the 
carry signal. 

The optical pass gate logic circuit has a number of 
significant advantages:

•  All switches making up the critical path operate 
collectively—We saw earlier that the gate opera-
tion wait time is proportional to the number of 
gates in an AND/OR logic circuit since subse-
quent gates cannot act until they receive the carry 
signal from the previous gate. Since optical pass 
gate logic circuits operate all gates collectively, 
though, they support critical paths requiring only 
a few picoseconds at most. 

•  Light speed operations—Since the optical carry 
does not sense R or C in the optical path, circuits 
are not slowed by R and C limitations in paths. 
Although optical gate operations do incur some 
RC delay, the operation time is affected very lit-
tle since all gates operate collectively. 

•  Logic operation without optical transistor—
Operations that require an optical transistor that 

controls the optical carry by another light signal 
are very difficult to implement since with today’s 
technology they consume enormous amounts of 
energy, generate practically the same amount of 
latency as CMOS gates, and have a host of other 
issues. However, our optical pass gate logic cir-
cuit performs logic operations without an optical 
transistor simply by passing the optical carry 
through electrically controlled optical gates. 

One might assume that this configuration could be 
just as easily implemented with electronic circuitry, 
but the carry signal passes right through the series 
resistance of multiple transistors, which would drive 
up R and make it virtually impossible to fabricate a 
high-speed response circuit. 

In contrast, our optical carry scheme is independent 
of R and C, so the carry propagation time is dramati-
cally reduced by exploiting nanophotonic technolo-
gy. For example, the propagation time for an optical 
gate length of 100 μm is on the order of ~1 ps. This is 
just a fraction of the latency generated by a CMOS 
gate. 

5.   Ultralow-latency optical parallel adder 

Let us consider a specific circuit configuration as an 
example of a digital adder. A typical electronic circuit 
configuration is illustrated in Fig. 3(a). The carry 
signal (ci) operates the gate in the i + 1th logic block, 
and the result generates the next carry signal (ci + 1). 
One will note that a certain amount of wait time is 
generated for the gate operations in the various logic 
blocks by this step. The new circuit configuration we 
propose is shown in Fig. 3(b). In this scheme, all 
gates in the logic blocks are operated collectively, and 
this fundamentally changes the structure of carry sig-
nal propagation. 

Let us first configure a BDD-based full adder (FA) 
as the i + 1th logic block. 

Fig. 3.   Schematic diagrams of digital adder circuits.
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An FA takes two 1-bit inputs (x and y) representing 
the two significant bits to be added. In the circuit 
shown in Fig. 4(a), a Mach-Zehnder interferometer 
(MZI) is incorporated as a 2 × 1 switch. The switch is 
configured to select the upper (lower) input port when 
the input signal (xi, yi, ci) is “1” (“0”). The circuit 
selects the light source located in the leaf part of the 
tree structure according to the truth table in Table 1. 
Note that xi, yi, and ci are all input at the same time, 
and consequently, all the MZIs are driven at the same 
time. This allows the carry operation [ci + 1 = CARRY 
(xi, yi, ci)] and ith digit addition [si = SUM (xi, yi, ci)] 
to be completed just by propagation of light from the 
light source. 

Note, however, that this circuit only adds two 1-bit 
inputs, x + y. In order to add multi-bit inputs, the opti-
cal carry signal (ci + 1) output from the ith FA circuit 
must be capable of operating the i + 1th FA circuit 
gate. For example, this could be achieved using an 
optoelectronic (OE) converter. Although there is a 
way of converting ci + 1 to electronic signals, this 
involves latency, which again raises the issue of 
delayed operation time. 

This led us to implement the block diagram shown 
in Fig. 4(b) [4]. This circuit operates according to the 
truth table in Table 2, which redefines the truth table 
in Table 1. Instead of the light source in Fig. 4(a), here 
we employ optical ci and xi signals. Light ci uses out-
put from the ith FA circuit, while the optical xi signal 
is produced by combining light from the light source 
and from the MZI in the upper left. As is apparent 
from Table 2, the CARRY and SUM operations 
respectively select ci (xi) and –ci (ci) when exclusive or 

(XOR) (xi, yi) = 1 (0). This operation drives the three 
MZIs shown on the right side of Fig. 4(b). For exam-
ple, the SUM operation is executed when ci (–ci) is 
input to the port in the upper left (lower left) of the 
MZI in the middle of the right side, and by selecting 
the port in the lower left (upper left) when XOR  

Fig. 4.   Schematic diagram of optical FA.
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(xi, yi)1 = (0). In this architecture, only one MZI is in 
the path where ci is input and ci + 1 is output. This is 
the critical path that limits addition operations. 

The simulation results for 4-bit addition are pre-
sented in Fig. 5. The leading edge of each digit’s 
signal reveals the response speed of XOR operations. 
Note that arithmetic latency of XOR does not accu-
mulate as the number of digits increases. However, τ 
in the figure reveals a cumulative arithmetic delay of 
four digits, which generates a delay of about 1 ps per 
digit using a 100-μm-long MZI. The bottom line is 
that this ultralow latency figure is far smaller than the 
22-ps-per-digit latency of current state-of-the-art cir-
cuits implemented in CMOS. 

6.   Future prospects

This article introduced ultralow-latency optical 
pass gate logic circuits using a digital adder as an 

example. We plan to build on this new architecture as 
we pursue operational trials on ultrasmall-feature 
devices that we are now developing as a concurrent 
project. 
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Fig. 5.   Simulation results for 4-bit digital adder.
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