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1.   Importance of lifestyle-related 
disease prevention

Lifestyle-related diseases such as type 2 diabetes, 
dyslipidemia, and hypertension are defined as dis-
eases largely caused by factors such as an unhealthy 
life style, lack of physical activity and sleep, and 
excessive alcohol intake. In Japan, treatment of 
patients with lifestyle-related diseases accounts for 
30% of medical expenses, and the mortality rate from 
such diseases is 60%. Therefore, prevention of life-
style-related diseases is one of the most important 
issues for extending the human health span, which 
refers to the length of time a person is healthy—not 
just alive. 

It is well known that interventions to patients at an 
early stage of a disease are effective in preventing the 
onset and progression of the disease, and many inter-
vention programs such as Specific Health Checkups 
and Specific Health Guidance [1] have been imple-
mented in Japan. However, such programs incur large 
costs for the government and health insurance provid-
ers. Therefore, more efficient and effective interven-
tions for keeping people healthy are needed. 

2.   Artificial intelligence (AI)-based 
health management system

We are developing an AI-based health management 
system that suggests efficient and effective interven-
tions for keeping people healthy based on their risk of 
disease predicted using AI. The concept of the system 
is illustrated in Fig. 1. The system first gathers health 
data on a user, for example, electronic health records 
(EHRs) obtained from a clinic and self-monitoring 
records measured at home. Then the system predicts 
the risk of each disease using the records and AI. 
Finally, it prepares a plan for efficient and effective 
intervention based on the prediction results and sug-
gests the intervention via clinicians, wearable devic-
es, or robots.

NTT’s accumulated knowledge in data science was 
used to full advantage in developing the system. For 
example, NTT, in collaboration with the University of 
Tokyo Hospital, made use of knowledge in the area of 
human behavior analysis to address patients’ treat-
ment behavior and successfully predict possible 
missed scheduled clinical appointments [2]. Some 
analysis technologies used in the system have grown 
from basic research in various fields outside medical 
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science.
In this article, we introduce a feature extraction 

model for unequally spaced medical data. This model 
improves the disease risk prediction of the system 
using EHRs and self-monitoring records with 
unequal intervals. We also describe an application 
where the model improved the prediction accuracy of 
poor glycemic control of patients with diabetes.

3.   Challenge of analyzing unequally spaced 
medical data

Medical data often consist of unequally spaced val-
ues. In general, lab tests are done and prescriptions 
are issued during clinical visits. The intervals of 
clinical visits depend on the disease condition and the 
adherence to treatment and therefore often vary. 
When users forget to take their self-monitoring 
records, these intervals also vary. 

The general method of disease risk prediction using 
unequally spaced values consists of four processes: 
quantization, completion, feature extraction, and 
classification as shown in Fig. 2. 

In the quantization process, unequally spaced data 
are divided into several chunks at equal intervals and 
converted into a quantized vector. Each chunk that 
includes values is filled with a representative value 
such as the average. In contrast, each chunk with no 
value is filled with a null symbol. For example, when 
data are divided into one-day intervals, chunks for 

days with no self-monitoring records are filled with 
null symbols. 

In the completion process, each null symbol is 
replaced with an estimated value by using an interpo-
lation method, and the quantized vector is converted 
into an estimated equally spaced vector. The linear 
interpolation is used for estimating values when the 
trends in values are approximately expressed by a 
linear function. 

In the feature extraction process, features represent-
ing the estimated equally spaced data are extracted. 
For example, SAX (symbolic aggregate approxima-
tion) is used for transforming time series data into a 
character sequence. Matrix decomposition is used for 
transforming a vector into a lower-dimensional vec-
tor.

In the classification process, a model that receives 
the features and outputs the disease risk is construct-
ed. There are many classification methods, such as 
SVM (support vector machine) and logistic regres-
sion. 

However, a problem arises in the sequence from the 
completion to the feature extraction when using the 
general method. The feature does not represent the 
original quantized vector but rather, the estimated 
equally spaced vector. Any noise and errors in the 
completion process may be included in the feature, 
which can result in lower prediction accuracy. Fea-
ture extraction from the original quantized vector 
therefore involves the challenge of analyzing 

Fig. 1.   AI-based health management system.
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unequally spaced medical data. A method for tackling 
this challenge is described in the next section.

4.   Feature extraction model for 
unequally spaced medical data

We developed a feature extraction model that skips 
over the completion process and directly outputs a 
feature from the quantized vector, as shown in Fig. 3. 
The model uses an autoencoder, which is a data com-
pression technique using a neural network where the 
difference between the input and output vectors mea-
sured by a loss function is minimized by an optimizer, 
and the vector in the middle layer is used as a feature.

The proposed model modified the loss function of 
the autoencoder. The model minimizes the modified 
loss function L(w) and learns the parameters w. 

Here, L(w) is defined as:
L(w) = bn ∙ (vn − on(w)),
on(w) = f (bn, vn; w),

where b is a Boolean vector representing the i-th 
value of the quantized vector, v is a null symbol (bi = 
0) or not (bi = 1), and f is a function by the neural 
network. The loss function is designed to exclude the 
null symbols. After the minimization, the vector in 
the middle layer is used as a feature.

The proposed model outputs a feature with a uni-
form dimension even if the number of null symbols in 
the quantized vectors varies.  

5.   Application: prediction of poor 
glycemic control

Type 2 diabetes is one of the most common life-
style-related diseases, and there are approximately 10 
million diabetic patients in Japan. It is vital for dia-
betic patients to control their blood glucose level to 
avoid the complications of severe diabetes. We pre-
dicted poor glycemic control in patients with diabetes 
who needed more interventions in collaboration with 
the University of Tokyo Hospital [3]. We used the 
feature extraction model for unequally spaced medi-
cal data for the prediction.

We constructed a prediction model using EHRs 
from the University of Tokyo Hospital that included 
over 7000 diabetic patients. The intervals of lab tests 
varied among patients. The average interval of 
HbA1c (hemoglobin A1c) tests was 5.9 weeks with a 
standard deviation of 2.6 weeks. The ROC AUC (area 
under the receiver operating characteristic curve) of 
the prediction without the feature extraction model 
was 0.72. This value increased to 0.80 by using the 
feature extraction model. We therefore confirmed that 
the model improved prediction accuracy. 

6.   Future development

We are promoting the development of the AI-based 
health management system to contribute to efficient 
and effective interventions that help keep patients 
healthy. We will improve the core technologies in the 

Fig. 2.   General method of analyzing unequally spaced data.

HbA1c: Hemoglobin A1c is a marker used to measure blood sugar (glucose) levels over the previous three months.
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system by utilizing standardized medical data stored 
in the EHR systems of hospitals and measured by 
wearable devices. We will also take advantage of the 
knowledge of robotics NTT has accumulated [4] and 
develop a novel intervention method through net-
worked robots and devices.
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Fig. 3.   General method of analyzing unequally spaced data.
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