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1.   Introduction

NTT places high priority on addressing various 
social issues and strengthening industrial competi-
tiveness, and the use of artificial intelligence (AI) in 
our business endeavors in pursuit of these goals is an 
area of great importance to us. AI includes many 
technologies such as those used in statistical analysis, 
machine learning, and deep learning, which are 
applied to perform classification, regression, and pre-
diction tasks with large amounts of data. Deep learn-
ing has been attracting a great deal of interest lately 
because it has achieved a practical level of accuracy 
in a variety of tasks. It has already been introduced to 
improve various business practices and is expected to 
become a driving force in the creation of new busi-
nesses.

Deep learning is a method to extract features from 
data hierarchically. A layered neural network is usu-
ally used as a model. Users select a suitable neural 
network according to a type of task or data. Convolu-
tional neural networks are suitable for image data, 
while recurrent neural networks (RNNs) suit time-
series data. In a neural network, the system makes 
predictions by giving weight to input data signals or 
by applying nonlinear transformation to the signals 
hierarchically and then having the signals propagate 
(Fig. 1). Learning is a process of adjusting weights to 

reduce the amount of error when using a large train-
ing dataset. In this process, the layered structure 
enables deep learning to achieve high accuracy in a 
variety of tasks.

However, the layered structure of deep learning 
models presents some problems such as an increase 
in learning time and destabilization of learning itself. 
Therefore, it is important to address this issue when 
making full use of deep learning techniques. To this 
end, the NTT laboratories have developed (1) an 
algorithm that improves learning efficiency and (2) 
an algorithm that stabilizes learning in an RNN [1, 2]. 
These algorithms are introduced in the following sec-
tion.

2.   Algorithm to improve learning efficiency

Learning of a layered neural network model is a 
process of adjusting weights to reduce the amount of 
error. This adjustment is performed gradually by 
applying a procedure as shown in Fig. 2. First, data 
are input into the model and a prediction result is 
obtained (forward propagation). Next, this prediction 
result is compared with the correct label, and the 
amount of error is calculated (error computation). 
The calculated amount of error is propagated to the 
model (back propagation), and the update direction of 
weights is calculated. The amount of updating is also 
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calculated (weight update amount computation). 
Finally, the weights are updated using this update 
amount (weight update). There are several approach-
es to calculate the weight update amount, and the 
learning efficiency varies depending on the approach 
used. In other words, the amount of error that can be 

reduced per loop depends on the approach used.
Several approaches adjust the update amount based 

on information about past update directions. For 
example, the widely used approaches RMSprop and 
Adam adjust the update amount based on statistical 
values calculated from the absolute values of the 

Fig. 1.   Layered neural network.
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update directions. However, since these approaches 
use the absolute values of the update directions, they 
do not generally take variances of those values into 
consideration. This means that no matter how much 
variance there is in the update directions, the same 
update amount is set if the absolute amount is the 
same.

To address this problem, we have developed an 
algorithm that adjusts the update amount based on the 
variance in the update directions (Fig. 2). If the 
update directions vary significantly, it can be intui-
tively determined that learning is unstable. Therefore, 
the update amount is reduced to stabilize learning. If 
the variance of the update directions is small, the 
update amount is increased. This would increase the 
variance but would also increase the possibility of 
learning breaking away from a local solution, 
enabling it to further reduce the amount of error.

This algorithm is simple and can thus be easily 
implemented in numerous deep learning frameworks. 
It also has a theoretically interesting aspect. It can be 
regarded as a type of optimization with precondition-
ing. The preconditioning matrix that sets the optimi-
zation conditions becomes an approximation of the 
square root of the diagonal elements of a matrix cal-
culated from gradients, which is called the Fisher 
information matrix. From the perspective of informa-
tion geometry, which is a framework for visually 
understanding information processing problems, this 
fact suggests that an algorithm that repeats updates 
can converge faster than existing algorithms (Fig. 3).

3.   Technique to stabilize training of gated 
recurrent unit (GRU)

A deep learning model called an RNN is used to 
handle time-series data such as those used in speech 
recognition or machine translation. The RNN memo-
rizes information about past data as a state and calcu-
lates the output from this state and the current input. 
For example, consider a task of predicting the next 
word from a given text. The next word depends on the 
context of the preceding text. It can be predicted at a 
high level of accuracy by having the RNN memorize 
information about the past context as a state.

To process time-series data with a high degree of 
accuracy, it is necessary to preserve past information 
for the long term. Therefore, an important indicator 
of RNN performance is how long the RNN can 
memorize past information. A model structure called 
the long short-term memory (LSTM) was proposed 
in the late 1990s to achieve long-term memorization 
[3]. The LSTM has a structure called a memory cell 
that takes in past memories, and a gate structure that 
forgets unnecessary information so that old but 
important information can be saved while informa-
tion that has become unnecessary can be forgotten. 
The LSTM has already been applied in several 
machine translation and speech recognition technolo-
gies. However, the LSTM has a complicated struc-
ture, so the simpler GRU, which combines the input 
gate and the forget gate of the LSTM into one, was 
proposed in 2014 [4]. The GRU has a simpler struc-
ture and requires less computation; however, it has 
been demonstrated empirically that the GRU achieves 
a level of accuracy almost equivalent to that of the 

� �: step size
g : update direction
D : preconditioning matrix
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Fig. 3. Behavior of algorithm on loss function with respect to weights θ.
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LSTM.
While the RNN can process time-series data at a 

high level of accuracy, its learning becomes unstable 
due to a phenomenon called gradient explosion [5]. 
This is a phenomenon whereby the gradient, which 
plays the main role in learning of neural networks, 
becomes so large as to cause learning to fail. An exist-
ing technique to counter this problem is gradient clip-
ping, which clips gradients at a certain threshold 
value. This technique requires the threshold value to 
be adjusted through trial and error.

We are studying ways to solve the gradient explo-
sion problem by analyzing the behavior of the GRU. 
From the perspective of dynamical systems, it can be 
said that a gradient explosion arises when a bifurca-
tion occurs as a result of a change in parameters of the 
GRU (Fig. 4). A bifurcation is a phenomenon in 
which the behavior of the GRU changes dramatically 
when there is a small change in its parameters. NTT’s 
algorithm for stabilizing the training of GRU involves 
analyzing the behavior of the GRU state to identify 
the point at which a bifurcation occurs. Furthermore, 
NTT has proposed a method of learning that effi-
ciently avoids the bifurcation point. Thus, we are 
studying a method of learning that has a higher 
degree of accuracy and requires fewer trial-and-error 
attempts than gradient clipping [2].

4.   Collaborations to refine NTT-developed 
advanced technologies

While devoting our energies to research, we also 
undertake activities to improve the effectiveness of 
deep learning technology in collaboration with a 
broad spectrum of users. For example, we have 
implemented our efficient learning technology to 
optimizers of multiple representative deep learning 
frameworks such as Chainer, TensorFlow, and Caffe, 
and we are evaluating our technology in collaboration 
with NTT Group companies. To date, we have exam-
ined the efficiency and accuracy of a model for an 
image recognition service in order to assess the 
model’s feasibility. Through such examinations, we 
are accumulating know-how regarding the optimum 
sizes (batch sizes) of the input training dataset based 
on the data variety and the initial values of the learn-
ing rate and weights. We verified our learning stabili-
zation technique for various types of time-series data 
such as audio data, language data, and sensor data so 
as to acquire know-how regarding the relationship 
between our technique when used in combination 
with optimizers as well as the degrees of stability and 
accuracy.

In addition, we are studying a wide range of possi-
ble approaches to promote collaboration with a broad 
spectrum of users, for example, providing technology 
for speeding up or stabilizing deep learning as open 
source. We are also studying the possibility of provid-
ing to users a one-stop service covering a deep learning 
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framework, tuning, and a distributed processing plat-
form. This will be done by building the technologies 
for speeding up or stabilizing deep learning into an AI 
processing platform called the corevo Computing 
Infrastructure (CCI), currently being studied at the 
NTT laboratories [6]. By building deep learning tech-
nology into the CCI, we aim to enable even those 
users without specialized knowledge to perform 
advanced data analysis.
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