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1.   Introduction

In factory automation, measuring in real time 
whether products meet specifications is important for 
efficient product manufacturing. We have developed 
a high-speed thickness measuring instrument for this 
purpose using optical coherence tomography (OCT) 
[1, 2] by applying optical communication technology, 
specifically, high-speed optical switching using a 
potassium tantalate niobate (KTa1−xNbxO3, or KTN) 
light deflector [3, 4]. 

OCT is a technique for producing tomographic 
images with a resolution of several tens of microme-
ters. The technique is useful for cell-level diagnosis 
and has been put to practical use as a biological tomo-
graphic imaging apparatus for medical use. There are 
two types of OCT: time domain OCT (TD-OCT) and 
Fourier domain OCT (FD-OCT). In addition, swept-
source OCT (SS-OCT) has been attracting attention. 

It is a variation of FD-OCT, which is advantageous in 
that it enables the acquisition of tomographic images 
in real time.

SS-OCT uses a wavelength swept laser as a light 
source, which is a laser that continuously varies 
(sweeps) in wavelength with time. SS-OCT operates 
in two steps. First, the SS-OCT apparatus produces 
interference between two light waves—reflected 
light (sample light) obtained by irradiating light to the 
sample to be measured (measurement sample) and 
light (reference light) that passes through a fixed 
length optical path. Next, frequency analysis is per-
formed on the intensity signal (interference signal) of 
the interfered light to obtain depth information on the 
sample. Since the frequency of the interference signal 
is proportional to the optical path difference between 
the optical paths through which the sample and the 
reference light pass, it is possible to measure the posi-
tion of the reflection point in the sample by analyzing 
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the frequency.
In our thickness measuring instrument, reflected 

light beams from both the back and front sides of the 
measurement sample are respectively used as sample 
and reference light beams. (That is, the sample itself 
functions as a Fabry-Perot interferometer.) At this 
time, since the combining of the sample and the refer-
ence light is performed on the sample front side sur-
face, the optical path length difference is twice the 
product of the thickness and the refractive index of 
the sample. Therefore, since the refractive index var-
ies depending on the wavelength due to the refractive 
index wavelength dispersion of the sample, there is a 
problem in that the thickness measurement value dif-
fers accordingly, if the central wavelength is differ-
ent.

To solve this problem, we use the characteristic of 
the refractive index wavelength dispersion of the 
sample to correct the interfered light signal according 
to the difference in the center wavelength. As a result, 
we confirmed that the fluctuation of the thickness 
measurement value was suppressed [5].

2.   SS-OCT thickness measurement instrument

The basic construction of our thickness measure-

ment instrument using the SS-OCT technique is 
shown in Fig. 1. The thickness of a reference sample 
is already known, and the thickness value is used as a 
reference value for thickness measurement.

The light wave of the swept light source is divided 
into two light waves by a coupler and irradiated to the 
measurement sample and the reference sample via 
the circulator (C) and the fiber collimator (FC), 
respectively. As described above, each sample func-
tions as a Fabry-Perot interferometer, and the light 
wave irradiated to each sample is reflected on the 
front surface and the back surface of each sample, 
and light waves from the front and back surface are 
multiplexed on the front surface of each sample to 
become the interfered light wave. 

The interfered light of the measurement sample and 
the reference sample is input to the photodetectors 
PD(S) and PD(R) via the FC and the circulator and 
photoelectrically converted. The signal obtained by 
converting the interfered light into an electrical signal 
is called an interference signal. The interference sig-
nal generated by the measurement sample is referred 
to as a measurement interference signal, and the ref-
erence sample is referred to as a reference interfer-
ence signal.

The interference signal s(t) is generally expressed 

Fig. 1.   Thickness measurement instrument using SS-OCT technique. Copyright©2018 IEICE [5].
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by the following equation [6],

s(t) = a(k(t)) cos(2zk(t)),� (1)

where t is time, k(.) is the wave number of the light, z 
is the optical thickness of the sample, and a(.) is the 
amplitude. If the refractive index of the sample is n 
and the thickness of the sample is L, then z = nL. In 
this way, the interference signal has a form in which 
the cosine function is AM (amplitude modulation)-
modulated with the amplitude a(.). This means that 
the envelope curve of the cosine function is a(.).

The instantaneous frequency f(.) at time t of the 
interference signal is expressed by the following 
equation,

f(t) = 
z
π 

dk
dt |

t
 = 

z
π  k'(t),� (2)

where k'(.) is a function obtained by differentiating k 
with time t.

If k(.) is linear with respect to time t (referred to as 
wavenumber linear), since k'(.) is constant with 
respect to time t, the interference signal frequency f(.) 
becomes constant. Therefore, the Fourier transform 
result S(.) of the interference signal s(.) is as follows,

S(ν ) = A(ν ) * F(cos(2zk(t)))|ν
= A(ν ) * δ (ν + 

z
π  k') + A(ν ) * δ (ν − 

z
π  k'),

� (3)

where A(.) is the result of Fourier transformation of 
a(.), ‘*’ is a convolution integral, F(.)|ν  is Fourier 
transformation, and δ (.) is a δ  function.

According to Eq. (3), the Fourier transform result 
of the interference signal is a signal in which the A(.) 
signal centered on zk'/π and the inverted A(.) centered 
on −zk'/π are arranged symmetrically around the fre-
quency zero. Therefore, when we extract only the 
signal of the positive frequency and detect its center 
frequency νc, we can calculate the optical thickness z 
by z = πνcz/k'.

Here, the signal centered on νc is called a point 
spread function (PSF). Its shape is indicated by A(.) 
as shown in Eq. (3). Normally, PSF is a function 
expressing the blurring degree of a point in an image, 
but in the OCT image, it represents the blurring 
degree of the signal representing the reflection point 
in the measurement sample.

Incidentally, if k(t) is nonlinear with respect to time 
t, f(t) fluctuates over time, and F(cos(2zk(t)))|ν is not 
a linear combination of the two δ functions. There-
fore, the width of the PSF increases, and the signal 
representing the reflection point becomes blurred. In 
other words, the resolution of the OCT image deterio-

rates.
Rescaling is one method of narrowing the width of 

the PSF [6]. This involves shaping the waveform of 
the interference signal to be linear with respect to 
time by sampling (hereafter, expressed as ‘resam-
pling’) the interference signal s(t) at a specific timing 
to equally divide phase θ = 2zk(t), which is the argu-
ment of the cosine function of Eq. (1). Rescaling is 
described in detail later in the article.

The sampling timing data (denoted as ‘resampling 
address’ in Fig. 1) in the resampling process are gen-
erated from the reference interference signal. Resam-
pling (rescaling) is performed on both the sample 
interference signal and the reference interference 
signal using the resampling address. Each rescaled 
interference signal is Fourier transformed after being 
windowed.

PSF signals are respectively obtained from the 
sample and reference interference signals, and their 
peak positions are calculated. The peak position cor-
responds to the aforementioned νc = zk'/π. In the 
thickness measurement, the thickness zS of the optical 
path length is measured by calculating zS = zR (νcS/
νcR) using νcS = zSk'/π corresponding to the measure-
ment sample and νcR = zRk'/π corresponding to the 
reference sample. The advantage of this method is 
that it is unlikely to be affected by the time variance 
of the wavelength.

3.   Rescaling signal processing

An outline of the rescaling process is shown in 
Fig. 2. Rescaling is a process of converting an inter-
ference signal whose frequency varies with time into 
a signal whose frequency is constant with respect to 
time.

The basic mechanism of rescaling is described 
below. The fact that θ = 2zk(t), which is the argument 
of the cosine function of the interference signal in Eq. 
(1), does not linearly change with time is problematic 
in that F(cos(2zk(t)))|ν in Eq. (3) is not a sum of two 
δ functions. One method to effectively solve this is to 
resample the interference signal so that θ = 2zk(t) 
changes linearly with time.

Let us assume that an inverse function t(k) of k(t) is 
obtained. (The method of obtaining t(k) is described 
later.) With t(k), the interference signal s(t) of Eq. (1) 
is resampled at times (resampling address) tn = 
t(δk ∙ n + k0) such that the sampling point interval 
becomes δk (constant), and at the timing t' = nδt (δt is 
constant), the sample signal s(tn) is rearranged. As a 
result, the rearranged signal s'(t') is equivalent to the 
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case where the wave number linearly changes to time 
t'. That is, k(tn) = gktn + k0, where gk = δk/δt. As 
described above, the frequency of the interference 
signal subjected to rescaling processing is constant 
with respect to time.

In the above description, the method of acquiring 
the resampling address using wavenumber k of light 
is shown, but the address can be similarly obtained 
even by using the phase θ = 2zk(t). In the actual pro-
cessing, phase θ(t) can be directly calculated as 

described later, so the resampling address is calcu-
lated using phase θ(t). A diagram of the concept of 
rescaling is shown in Fig. 3.

When the interference signal s(t) is resampled with 
sample points (resampling address) having equal 
phase intervals with respect to the phase change 
curve, s(t) is converted into an interference signal 
s'(t') whose frequency is constant regardless of time. 
Hereinafter, the phase change curve is referred to as 
the conversion curve.

Fig. 2.   �Outline of signal processing for PSF generation. Although the frequency of the interference signal fluctuates with 
respect to time, it is unified by the rescaling process. Copyright©2018 IEICE [5].
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For rescaling, t(θ ) needs to be known before 
rescaling. For this purpose, it is necessary to find θ(t). 
Therefore, a specific method for obtaining θ(t) is 
described below. When the optical distance of the 
thickness of the measurement sample shown in Fig. 1 
is z, the interference signal output from the PD is 
expressed by Eq. (1). To simplify the explanation, the 
interference signal s(t) is simplified as follows by 
assuming a(k(t)) is constant over time,

s(t) = a0 cos(2zk(t)),� (4)

where a0 is a constant. The method of obtaining phase 
θ(t)(= 2zk(t)) is described below. Equation (4) is 
transformed as follows,

s(t) = 1
2 

 a0 (ej2zk(t) + e−j2zk(t)),� (5)

where j stands for the imaginary unit. The component 
s+(t) obtained by removing the negative frequency 
component from s(t) is as follows,

s+(t) = 1
2 

a0ej2zk(t) 

= 1
2 

a0(cos(2zk(t)) + j sin(2zk(t))).� (6)

According to Eq. (6), s+(t) is a complex number, and 
using the real part and the imaginary part enables us 
to obtain θ (t) as follows.

θ (t) = arg(ℜ(s+(t)) + j ℑ(s+(t)))

= arg(cos(2zk(t)) + j sin(2zk(t))),� (7)

where arg(.) stands for argument, and ℜ(.) and ℑ(.) 
respectively represent the real and imaginary parts.

An example of the signal processing procedure for 
obtaining the conversion curve θ (t) from the interfer-
ence signal s(t) is shown in Fig. 4. To obtain s+(t) 
from s(t), s(t) is Fourier-transformed, the negative 
frequency component is removed, and inverse Fouri-
er transform is performed. Then, θ (t) is obtained by 
calculating the argument of s+(t). By obtaining t(θ ) 
from θ (t), obtaining the sampling address having the 
constant interval δθ  from t(θ ), and sampling the 
interference signal using the sampling address, we 
can obtain an interference s'(t') equivalent to that 
obtained when a wavenumber linear swept light 
source is used. Since θ (t) and k(t) can be used in the 
same way to obtain the sampling address, k(t) may be 
used instead of θ (t). If z is known, k(t) is obtained 
from θ (t) as follows,

k(t) = θ (t)
2z

.� (8)

4.   Problem of rescaling signal processing

In our thickness measurement instrument as shown 
in Fig. 1, the reference sample to acquire the resam-
pling address and the measurement sample (sample 

Fig. 4.   �Conversion curve calculation method. A conversion curve to carry out rescaling is calculated from a typical 
interference signal before taking a tomographic image and then used during imaging. Copyright©2018 IEICE [5].
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to be measured) are different. From the viewpoint of 
wavelength dispersion, it is desirable that the  
measurement sample and the reference sample are 
made of the same material. However, in order to 
acquire a highly accurate resampling address from a 
signal with a high signal-to-noise ratio, since the 
measurement sample and the reference sample can-
not be made of the same material when the light 
transmittance of the measurement sample is low, the 
reference sample material should have high transmit-
tance, unlike the measurement sample.

We show in Fig. 5 a diagram extracted from Fig. 1 
of the process to obtain the PSF of the measurement 
sample of the thickness measurement instrument. If 
the wavelength dispersion of the refractive index of 
the measurement sample and that of the reference 
sample are different, the ratio zS(λ)/zR(λ) of the opti-
cal path lengths in two samples will differ with wave-
length. Therefore, the conversion curve θR(t)
(= 2zRk(t)) obtained from the reference sample will 
not have a similar shape to the conversion curve θS(t)
(= 2zSk(t)) adapted to the dispersion of the measure-
ment sample.

The effect on the PSF position when the conversion 
curve is not appropriate is shown in Fig. 6. When the 
conversion curve used for generating the resampling 
address is not suitable for the measurement sample, 
even if the rescaling is performed, the frequency of 
the interference signal will not become uniform with 

respect to time. For this reason, the peak position of 
the PSF will vary depending on the area of the inter-
ference signal on which Fourier transform is per-
formed. Similarly, when the sweeping wavelength 
band of the swept light source is shifted, the peak 
position of the PSF shifts.

5.   Correction method of conversion curve

Since the shift in the PSF peak position described 
above is caused by the fact that the conversion curve 
generated in the reference sample does not match the 
measurement sample, it is necessary to correct the 
conversion curve generated using the reference sam-
ple so that it fits the measurement sample.

An outline of the conversion curve correction is 
shown in Fig. 7. The phases θR(t) and θS(t) of the 
interference signals of the reference sample and the 
measurement sample are given below,

θR(t) = 2zRk(t) = 2nR(λ)LRk(t),� (9)
θS(t) = 2zSk(t) = 2nS(λ)LSk(t),� (10)

where zR and zS are the optical path lengths of the 
thicknesses of the reference sample and the measure-
ment sample, nR(.) and nS(.) are the refractive indices 
of the reference sample and the measurement sample, 
λ is a wavelength, and LR and LS are the thicknesses 
of the reference sample and the measurement sample. 
By rewriting Eqs. (9) and (10) using the refractive 

Fig. 5.   �Process to calculate PSF of measurement sample. If the refractive index wavelength dispersion values of the 
reference sample and the measurement sample are different, the conversion curve obtained from the reference 
sample will not match the measurement sample. Copyright©2018 IEICE [5].
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index ratios rR(λ, λ0) = nR(λ)/(nR(λ0) and rS(λ, λ0) = 
nS(λ)/nS(λ0) based on the refractive index nR(λ0), 
nS (λ0) when the wavelength is λ0, we obtain the fol-
lowing,

θR(t) = 2rR(λ, λ0)nR(λ0)LRk(t),� (11)
θS(t) = 2rS(λ, λ0)nS(λ0)LSk(t).� (12)

To convert the conversion curve θR(t) obtained from 
the reference sample into a conversion curve suitable 
for the measurement sample, we use the method 
described below to make θR(t) similar to θS(t) by mul-
tiplying θR(t) by the correction coefficient (expressed 
as rR→S(λ, λ0)). At this time, θR(t) and θS(t) have the 
following relationship,

Fig. 6.   �Effect on PSF position when conversion curves are different. When the refractive index wavelength dispersion values 
of the reference sample and the measurement sample are different, the frequency of the interference signal becomes 
non-uniform even after rescaling. Therefore, since the frequency of the interference signal varies depending on the 
acquisition time of the interference signal, the PSF peak position also differs according to the acquisition time zone. 
Copyright©2018 IEICE [5].
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θS(t) ∝ rR→S(λ, λ0)θR(t).� (13)

Substituting Eqs. (11) and (12) into Eq. (13) yields 
the following,

�rS(λ, λ0)nS(λ0)LSk(t) ∝ rR→S(λ, λ0)rR(λ, λ0)
nR(λ0)LRk(t).� (14)

If we consider that nS(λ0)LS and nR(λ0)LR are con-
stant, the correction coefficient rR→S(λ, λ0) must be as 
follows,

rR→S(λ, λ0) = 
rS (λ, λ0)
rR (λ, λ0)

 = 
nS(λ)
nS(λ0)

nR(λ0)
nR(λ) .� (15)

By multiplying the conversion curve θR(t) obtained 
from the reference interference signal by the correc-
tion coefficient rR→S(λ, λ0), we can obtain the conver-
sion curve θR'(t)(= rR→S(λ, λ0) ∙ θR(t)). Then, the 
resampling address is obtained from the conversion 
curve θR'(t) and used for rescaling.

Incidentally, before calculating θR'(t), it is neces-
sary to obtain λ(t) in order to calculate the product of 
rR→S(λ, λ0) and θR(t). It is likely to be calculated as 
λ(t) = 4πz/θ(t) in consideration of Eq. (8), but since z 
is a function of wavelength λ because of the effect of 
the refractive index wavelength dispersion, it is diffi-
cult to obtain λ(t) analytically from the following 
formula with z in Eq. (8) as a function of λ,

λ(t) = 
4π ∙ z(λ(t))

θ(t)
 = 

4π ∙ n(λ(t)) ∙ L
θ(t)

.� (16)

Therefore, λ(t)s that satisfies Eq. (16) is calculated 
for each time t using the Newton-Raphson method. 
The initial values of λ(t) are obtained by calculating 
λ(t) = 4π ∙ nR(λ0) ∙ LR/θR(t) using θR(t) obtained from 
the reference interference signal using the method 
shown in Fig. 4.

6.   Experimental results and discussion

In the experiment, silicon (Si) was used as a mea-
surement sample, and fused quartz glass (silicon 
dioxide: SiO2) was used as a reference sample. As 
shown in Fig. 8, the spectrum of the swept light 
source used in the experiment had a center wave-
length of 1311 nm and a wavelength range of 84 nm.

The refractive index wavelength dispersions of Si 
and SiO2 are shown in Fig. 9. They were approxi-
mated by the Sellmeier equation [7] using the coeffi-
cients given in Table 1. According to Fig. 9, since the 
rates of change of the refractive index with respect to 
the wavelengths of Si and SiO2 are different, these 
phase change curves are not similar. 

We show in Fig. 10 the correction coefficients rS(λ, 
λ0), rR(λ, λ0), and rR→S(λ, λ0) when λ0 = 1310 nm 
(1.310 μm). Further, conversion curves before and 
after correction are plotted in Fig. 11. The one-dotted 
chain line represents the ratio between them, and we 
can see that the conversion curve is corrected with 
reference to 1310 nm.

The relationship between the center wavelength 
and the thickness of the measurement sample was 
investigated to confirm whether the deviation of the 
thickness measurement value due to the wavelength 
shift improves by correcting the wavelength disper-
sion. Specifically, the wavelength region was divided 
into five regions, and then the PSF was calculated and 
the silicon thickness was measured for each region. 
The center wavelength and region for each of the five 
regions are listed in Table 2. To clearly observe the 
suppression of fluctuation in the thickness measure-
ment value with respect to wavelength fluctuation, 
the difference between the center wavelengths of 

Fig. 8.   Spectrum of swept light source. Copyright©2018 IEICE [5].
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regions (1) and (5) is relatively large at about 50 nm.
The results of measuring the thickness of Si as the 

measurement sample are shown in Fig. 12. Before the 

correction of the conversion curve (wavelength  
dispersion non-adaptive), the measured value shifted 
by 24.7 μm with respect to the deviation of the central 
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wavelength of 50 nm. After the correction (wave-
length dispersion adaptation), however, it only shifted 
by 2.14 μm. This result indicates that the deviation 
width of the thickness measurement value was 
improved to a width that was about one-tenth of that 
before correction.

7.   Summary

With the SS-OCT thickness measuring instrument, 
if the refractive index wavelength dispersion of the 
sample to be measured is not taken into account, a 
deviation will occur in the thickness measurement 
value due to deviation of the central wavelength of 
the light source. To solve this problem, we adapted 
the rescaling process to the wavelength dispersion of 
the sample to be measured and confirmed that the 
deviation of the thickness measurement value 
improved to about one-tenth of the value before adap-
tation.
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