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Abstract

We introduce an algorithm that can automatically identify communication network topologies that are
robust against failures. Robustness is usually assessed by the metric of network reliability. Since com-
munication networks are a critical infrastructure, designing networks with high network reliability val-
ues is essential. However, the problem of finding a network topology that offers the maximum network
reliability is a computationally difficult problem, and previous methods therefore restrict their applica-
tion area to very small networks. Our proposed method exploits the novel data structure called binary
decision diagrams, which makes it possible to find the most reliable network topology for communica-
tion networks with more than 10 times as many nodes (100) than is possible with previous methods.
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1. Network reliability

Communication networks have become a key infra-
structure and so must work without failure. However,
network components such as links and nodes may fail
for several reasons. Since these failures are inevita-
ble, communication networks must be designed so
that they continue to function even if these failures
occur. How can we design such networks?

An example of a simple communication network is
shown in Fig. 1(a). Since the network connects two
terminals with one link, the network will fail if the
link fails. In contrast, a network with an additional
link is shown in Fig. 1(b). This network will continue
to work if one of the links fails. Therefore, this net-
work is more reliable than the single-link network.

Network reliability is a measure used for quantify-
ing how robust a communication network is against
failures. It is defined as the probability that the net-
work will continue to support communications
assuming that the failure of its components follows
some probabilistic distributions.

Let us compute the network reliabilities of the net-
works in Fig. 1. We assume that each link fails inde-
pendently with a probability of 20%. Since the prob-
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ability of the network in Fig. 1(a) working equals the
probability that the link between terminals works, its
network reliability is 80%. In contrast, the network in
Fig. 1(b) will continue to work unless both links fail
simultaneously. Since the probability of such an event
happening is 20% % 20% = 4%, the reliability of the
network is 96%. In this way, network reliability can
quantify the robustness of a communication network.
We note, however, that evaluating network reliability
is a computationally difficult problem and becomes
infeasible for large networks.

2. Network reliability maximization

If a communication network is assessed to have suf-
ficient reliability, we can continue to use it without
modification. If, however, the reliability is insuffi-
cient, remedial action is needed. A typical approach
is adding links to the network since that always
improves the reliability. The task of finding the best
way to add links to improve reliability can be formu-
lated and solved as the combinatorial optimization™!
problem called the network reliability maximization
problem. In what follows, we make the realistic
assumption that the total budget for adding links to
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Fig. 1. Communication network examples. Network (b) is more robust against link failures than network (a).

Adding links to maximize network reliability while holding the total cost below 10
The costs and failure probabilities are listed in the table.
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Fig. 2. Budget constrained network reliability maximization problem.

the network is limited, and we want to maximize net-
work reliability under this budget constraint. We call
this problem the budget constrained network reliabil-
ity maximization problem.

The input of this optimization problem is a com-
munication network that consists of nodes and links,
the total budget, and a set of candidate positions for
adding new links. We assume that for each candidate
position, the cost for adding a link to the position, and
the probability that the added link will fail are known
in advance. The output of the problem is the commu-
nication network topology that achieves the maxi-
mum network reliability score and satisfies the con-
straint that the total cost incurred in adding links does
not exceed the budget. An example of a budget con-
strained network reliability maximization problem
and the set of candidate solutions of the problem are
respectively shown in Figs. 2 and 3. Of the candidate
solutions shown in Fig. 3, the center one is the opti-
mal solution—the communication network topology
that achieves the maximum reliability among those
satisfying the budget constraint.

We have seen that we can design a communication
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network that is robust against failures by solving the
network reliability maximization problem. However,
this problem is known to be computationally hard; it
takes a prohibitively long time even if we exploit
powerful modern computers.

A straightforward approach to solve the network
reliability maximization problem is to first enumerate
all candidate network topologies that can be made
while satisfying the budget constraint and then evalu-
ating the network reliability of each candidate. How-
ever, this simple approach has two potential prob-
lems. First, the number of candidate topologies satis-
fying a constraint may grow exponentially with net-
work size. Second, evaluating the reliability of a
candidate solution also takes an exponential amount
of time. To evaluate the reliability of a network, we
must enumerate all the possible link failure patterns
with which the network works. Since the number of
such failure patterns grows exponentially with

*]1 Combinatorial optimization: The problem of finding the best
combination from the set of combinations that satisfies given
constraints. Traveling salesman problems and knapsack problems
are typical examples of combinatorial optimization problems.
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Fig. 3. Example solutions for the problem in Fig. 2. The network in the center is an optimal solution.
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(c) 10-vertex BDD that
represents a set of 16 failure
patterns

Fig. 4. Using a BDD to represent failure patterns.

network size, the computation time also grows expo-
nentially. Due to these two difficulties, previous
methods can find optimal solutions only for very
small networks, that is, networks with fewer than 20
nodes.

3. Efficient optimization with
binary decision diagrams

We propose an efficient algorithm™? for finding the
optimal solutions of budget constrained reliability
maximization problems [1]. This algorithm can find
optimal solutions for communication networks with
more than 100 nodes. It can handle networks that are
10 times the size of those possible with previous
methods. Moreover, the proposed method works
more than 10 thousand times faster than existing
methods. The key to our algorithm is that it uses the
data structure called binary decision diagrams
(BDDs) [2].

BDDs can represent a set of failure patterns in a
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compressed form. We show in Fig. 4 a communica-
tion network (Fig. 4(a)) and its possible failure pat-
terns where the network still survives (Fig. 4(b)). In
Fig. 4(c), we show a BDD representing the set of
failure patterns in Fig. 4(b). A BDD is a directed
graph that consists of two types of vertices—the cir-
cles and rectangles in the figure. Every circle vertex
has two arcs—a solid arc and a dashed arc—and is
associated with a link of the communication network
in Fig. 4(a). Every rectangle vertex has a label of
either 1 or 0 and they are placed at the bottom.

In the BDD shown, every failure pattern in Fig. 4(b)
corresponds to a directed path in the BDD from the
root BDD vertex to the rectangle terminal vertex with
label 1. We can obtain the path that corresponds to a
failure pattern in the following way; given a failure
pattern, we first select the root BDD vertex (say v).
Then we check the link associated with the label of v.

*2  Algorithm: A computation procedure for solving a problem. A
computer can solve various problems by running algorithms.
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If the link works in the failure pattern, we follow the
solid arc and update v to the node reached. Otherwise,
if the corresponding link fails in the current failure
pattern, we follow the dashed arc of v and update v to
the node reached.

By repeatedly updating v depending on its labels,
we obtain a path in the BDD. For example, the failure
pattern marked by the green circle in Fig. 4(b) corre-
sponds to the path on the BDD represented by the
green arrow. By representing each failure pattern as a
path, the BDD can share equivalent partial paths and
thus represent the set of paths in a succinct way. For
example, the BDD in Fig. 4(c) represents 16 failure
patterns as a directed graph with 10 vertices. Since
we need 5 vertices for each failure pattern if they are
represented as paths, the compression ratio of this
BDD is 12.5%. When the input network is large, the
compression rate is smaller.

By using a BDD to compress the set of failure pat-
terns, we can accelerate some of the computations
needed in solving budget constrained network reli-
ability maximization problems. First, we can acceler-
ate network reliability evaluation. By using a BDD,
we can precisely evaluate network reliability in time
linear to the number of BDD vertices. If the compres-
sion ratio of a BDD is 99%, just 1% of the original
computation cost is needed to evaluate network reli-
ability. Second, a BDD can be used to estimate the
amount of improvement that can be achieved by add-
ing a link to the network. Such estimations allow us
to efficiently discard candidate network topologies
that may not achieve high reliability. This can also
reduce the computation cost needed to find an opti-
mal solution. In this way, BDDs enable us to optimize

NTT Technical Review Vol. 16 No. 11 Nov. 2018

the reliability of large communication networks.

Up to this point we have focused on the problem of
maximizing network reliability under budget con-
straints. In the real world, another design goal is to
achieve reliability higher than a given threshold value
at minimum cost. Our algorithm can be applied to this
problem and can efficiently find the minimum cost
solution.

4. Conclusion

We have introduced an efficient algorithm that can
find network topologies that maximize network reli-
ability. This algorithm can be applied to designing
infrastructure networks in addition to communication
networks such as road networks, rail networks, and
power transmission networks, all of which demand
high reliability. Of course, we have to consider sev-
eral aspects other than reliability when designing
communication networks. The most reliable network
might not be the best one if other aspects are consid-
ered. Future work includes enhancing our optimiza-
tion method so that it can simultaneously handle
multiple aspects, one of which is reliability.
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