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1.   Introduction

NTT Network Technology Laboratories is develop-
ing a deep learning based anomaly detection technol-
ogy called Deep Anomaly Surveillance (DeAnoS), 
which utilizes an autoencoder (AE) to promptly 
detect changes in the state of an ICT (information and 
communication technology) service [1–3]. In this 
article, we explain the technical issues concerning 
DeAnoS, which was exhibited at NTT R&D Forum 
2018 Autumn held in November 2018. 

2.   Overview of DeAnoS

An AE, as used in DeAnoS, is a type of deep learn-
ing based neural network that enables the learning of 
complicated structures inherent in data. Attention is 
now being focused on the use of AEs in technology 
for detecting anomalies. When an AE is used, the 
dimensionality of data in the middle layer of the AE 
is reduced by setting the dimensionality of the middle 
layer to be less than that of the input and output layers 
and by learning the parameters for reproducing the 
data of the input layer in the output layer. Anomaly 
detection using an AE is based on the premise that 

normal data are distributed in the input-data space 
around certain manifolds that can express low dimen-
sions. Specifically, as shown in Fig. 1, at the time of 
learning, a normal state is learned by using various 
kinds of data observed during normal operation of the 
system, and at the time of the test (i.e., anomaly 
detection), the current data are input to the AE that 
has learned the normal state as described above, and 
the distance between vectors of the input and output 
layers is output as the anomaly degree. When the 
degree of anomaly exceeds the threshold, the state is 
detected as an anomaly. 

In addition to numerical data such as resource and 
traffic information based on SNMP (Simple Network 
Management Protocol)/MIB (Management Informa-
tion Base) and flow data based on Netflow, the net-
work data to be entered also include the syslog of 
routers and servers (text information). With text logs 
such as syslog, identifiers (IDs) are created by using 
syslog-analysis technology [4] for each syslog line, 
and the text log is converted to numerical data by 
using the appearance frequency of each ID. This pro-
cess enables learning of information including sys-
log.

We are also working on not only detecting anomalies 
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but also estimating their cause at the time they are 
detected [5, 6]. Specifically, we are investigating a 
method using sparse optimization for estimating 
which input dimension causes the anomaly degree to 
become higher when an anomaly is detected by the 
AE. With this technology, the degree of contribution 
of each input dimension to the degree of anomaly is 
calculated; accordingly, it is expected to improve the 
efficiency of investigation after detection of anoma-
lies.

3.   Status of verification of DeAnoS at 
NTT Group companies

In cooperation with NTT Group companies, we are 
presently verifying DeAnoS on the basis of opera-
tional data acquired from actual services, and we are 
assessing the effectiveness of this technology and 
extracting the issues for practical use. Our initiatives 
with the Strategic Network Management Department 
of NTT EAST and the Network Services Department 
of NTT Communications are shown in Figs. 2 and 3, 
respectively. First, in cooperation with the Strategic 

Fig. 1.   How an AE works.
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Fig. 2.   Initiative with Strategic Network Management Department of NTT EAST.
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Network Management Department of NTT EAST, 
we confirmed the effectiveness of DeAnoS in detect-
ing anomalies in application servers and estimating 
the parameters that caused them. Second, in an initia-
tive with the Network Services Department of NTT 
Communications, we confirmed a case in which it 
was possible to estimate the causal parameter in addi-
tion to detecting the anomaly by analyzing changes in 
specific events and long-term trends.

4.   Future prospects

In this article, the deep learning based technology 
DeAnoS, which NTT Network Technology Labora-
tories has been developing, was outlined, and the situ-
ation regarding its verification at NTT Group compa-
nies concerning network-anomaly detection technol-
ogy was described. We will continue to fine tune 
DeAnoS by proceeding with its technology verifica-
tion with the aforementioned companies and improve 
the environment for utilizing DeAnoS in the real 
world. Future tasks regarding technology for detect-
ing network anomalies are to (i) improve the inter-
pretability of main causes when an anomaly is 

detected and (ii) adapt such technology to various 
environments. Accordingly, we will continue our 
research and development to address those issues.
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Fig. 3.   Initiative with Network Services Department of NTT Communications.
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