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1.   Introduction

An increasing amount of data is becoming available 
with advances in technology and the expansion of the 
Internet of Things (IoT). The potential advantages of 
having such data available are described in this sec-
tion.

1.1   Growth in IoT data
It has been reported [1] that the growth in storage 

devices is expected to increase 10 fold per decade, 
which is estimated to reach 100 zettabytes (ZB) (1 ZB 
= 1021 bytes) by 2030 and 1 yottabyte (YB) (1 YB = 
1024 bytes) by 2040. However, the growth in informa-
tion generated by sensors is expected to increase 40 
fold per decade, which is estimated to reach 1 YB by 
2030 and 40 YB by 2040 (Fig. 1).

Reflecting this rapid growth in IoT data generation 
and awareness of issues in their processing, a number 
of international standardization projects, such as Big 
Media [2], Internet of Media Things [3, 4], Network-
Based Media Processing [5, 6], and Network Distrib-
uted Media Coding [7], have recently been initiated.

1.2    New opportunities via large-scale multi-
modal data

Multi-modal IoT sensors are expected to be 
deployed around the world to obtain data of the entire 

earth (Fig. 2), which will make various applications 
possible. For example, in agriculture:

•  Monitoring field crops based on super-wide-area 
video analysis

•  Optimizing the timing and amount of fertilizer, 
water, and agrichemicals

•  Maximizing crops and quality of the harvest 
based on precipitation, temperature, and mois-
ture data.

Weather forecasting, disaster prevention, smart cit-
ies, surveillance/security, intelligent transport sys-
tems, logistics, infrastructure maintenance/inspec-
tion, tourism, etc., may benefit from the data of the 
entire earth.

Regular Articles

Data-coding Approaches for 
Organizing Omni-ambient Data
Seishi Takamura

Abstract
Various information sensors are currently deployed to generate data such as images, video, audio, and 

temperature. The amount of such multi-modal data is rapidly increasing compared to the development 
of information and communication technology (such as storage, transmission, and processing 
technology). This means a considerable amount of important Internet-of-Things data has to be abandoned 
since such data cannot be stored, transmitted, or processed. In this article, I describe our approaches for 
fully using the huge amount of multi-modal data.

Keywords: video coding, multi-modal signal handling, IoT data handling

Fig. 1.   Growth in generated data and storage size.
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2.   Omni-ambient data: data that cover 
the entire earth

Hereafter, the multi-modal data that cover the entire 
earth are referred to as omni-ambient data. Let us 
estimate the data size of omni-ambient data.

2.1   Number of sensors
If we were to observe the entire earth, we would 

have to deploy multi-modal sensors at every 10-m 
mesh point at, say, 10 m above the earth’s surface. 
Since the surface area of the earth is 5.1 × 108 km2, 
the number of sensors to cover the earth (S) would be 
5.1 × 1012. The rationale of covering the entire earth 
with sensors is as follows. If only a part of the earth 
is sensed, there will always be boundaries, which 
may cause uncertainty in data flux/interaction across 
them. If the entire world is covered, there would not 
be any boundaries; hence, no uncertainty would arise 
(Fig. 3).

2.2   Visual data
A hemisphere should be covered by about 1000 × 

1000 light rays (Fig. 4) to capture the earth’s light 

field. This resolution is about half the full high defini-
tion (HD) resolution (1920 × 1080). With this con-
figuration, one ray covers a solid angle of 6.3 × 10−6 
sr (steradian). If we assume that video is captured at 
30 frames per second and each pixel has 8-bit red (R), 
green (G), and blue (B) information, the total amount 
of raw (uncompressed) video data from a single cam-
era becomes 90 Mbit/s, but these data can be com-
pressed with an existing video coding scheme (such 
as MPEG-H* or High Efficiency Video Coding 
(HEVC) [8]) to 1/350 its size, which is V (the total 
amount of compressed video data from a single cam-
era) = 257 kbit/s. The total visual amount of omni-
ambient data is S × V = 1.41 Ebit/s (1 exabyte (EB) = 
1018 bytes), which is 41 YB per year. This amount is 
equivalent to all data that will be generated by 2040 
(Fig. 1).

2.3   Audio data
Compact disc quality single-channel audio is 

assumed for capturing audio, which is 44.1 kHz × 16 

Fig. 2.   Multi-modal sensor network over the entire earth.

Fig. 3.    Partial-earth sensing limitation (left) and entire-
earth sensing advantage (right).
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Fig. 4.    Light-field-density image covering one hemisphere.
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* MPEG-H: International standards for video and audio compres-
sion developed by the International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC) Mov-
ing Picture Experts Group (MPEG).
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bits = 88 kbit/s. Let it be compressed with a conven-
tional audio coding scheme (such as Advanced Audio 
Coding) to 1/20 its size, which is 4.4 kbit/s. The total 
audio amount of omni-ambient data is S × A = 45 
Pbit/s (1 petabyte (PB) = 1015 bytes), which is 1.4 YB 
per year.

2.4   Importance of visual data 
The amount of audio data is about 30 times less 

than that of light data in omni-ambient data. The 
amounts of other data, such as depth, temperature, 
and moisture, may be comparable or even less. There-
fore, the majority of the data is visual data. This is 
analogous to the visual data in Internet protocol (IP) 
traffic. It has been reported that mobile video traffic 
accounted for 59% of all worldwide mobile data traf-
fic in 2017 and will be 79% by 2022 [9]. IP video 
traffic accounted for 75% of all worldwide IP traffic 
in 2017 and will be 82% by 2022 [10].

3.   Challenges with organizing 
omni-ambient data

Some of the challenges with and opportunities for 
organizing omni-ambient data are discussed in this 
section. In addition to the example techniques 
described below (3.1–3.4), there should be many 
techniques to enable such organizing, such as pattern 
recognition, non-visual signal compression, large-
scale archiving, ultrafast database construction, dis-
tributed computing, broadband IoT connection, and 
communication security.

3.1    Further compression via multi-modal 
synergic coding

Suppose there are two random variables X and Y. 
We then have the following equation

I(X; Y) = H(X) + H(Y) – H(X, Y),

where I(X; Y) is the mutual information of X and Y, 
H(X) and H(Y) are the marginal entropies of X and Y, 
and H(X, Y) is the joint entropy of X and Y. Since I(X; 
Y) is non-negative, the above equation can be rewrit-
ten as 

H(X, Y) >= H(X) + H(Y).

This means that in terms of compression, it is always 
better to compress two (or even more) sources togeth-
er. This encourages us to abandon conventional sin-
gle-modal data coding for multi-modal data coding. 
One of the possibilities of efficient multi-modal data 
compression is depicted in Fig. 5. Conventionally, 

depth data and two-dimensional (2D) video data are 
encoded independently (sizes A and B, respectively, 
in figure). Since there is a non-negative relationship 
between depth and the captured image, 3D-shape-
aware collaborative video coding may have less com-
pressed data (size B’), which is smaller than B. This 
applies to not only two but also more than two modal-
ities.

3.2   Removing noise via real-entity mining
Sensed data are not always collected under ideal 

conditions, i.e., acquired data are deemed to contain 
noise, which is unpredictable and uncompressible by 
nature. Therefore, from the coding, storing, process-
ing, and transmitting points of view, noise should be 
removed. Conventionally, acquired pixel values are 
targeted for encoding. However, the original objects 
should be behind the acquired pixel values. There-
fore, being reminded of the existence of original 
objects (real-entity-oriented approach) may work 
better in signal processing, data compression, etc., 
than not taking care of it (observed-signal-oriented 
approach) (Fig. 6).

One such example is still-camera video coding. By 
processing such a video sequence and obtaining a 
real-entity image of the background, the video can be 
further compressed. Compared to the state-of-the-art 
video coding standard H.265/HEVC (reference soft-
ware HEVC test model (HM)16.4) [8], bit-rate sav-
ings of 32.40% on average and 56.92% at maximum 
in terms of the Bjøntegaard Delta rate (BD rate) [11] 
were observed. It was also observed that the decoded 
video contains less camera noise than the original, 
which means the decoded video is even subjectively 
better than the original (Fig. 7). It also provides 
21.17% faster encoding [12].

Noise is inevasible in any type of sensed data and it 
is uncompressible by nature. Therefore, noise reduc-
tion from data is crucial for compression efficiency. 
By tracking noisy rigid objects and temporally aligning 

Fig. 5.    Example of efficient multi-modal data compression.
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them and filtering out camera noise, coding efficien-
cy greatly improves. The filtered image can be con-
sidered as the real entity of the rigid object and will 
be used as a reference frame for input video coding. 
In our experiments, this processing worked well for 
both objective and subjective metrics (Fig. 8). There 
was a 19–47% increase in the BD rate against H.265/
HEVC (HM16.6) and 13–30% against preliminary 
Versatile Video Coding (VVC) [14] (JEM5.0). In 
terms of subjective video quality, the decoded video 

looked even better than the original video while only 
using 141–229 times fewer bits than JEM5.0 [13].

Another example is water-bottom video coding. 
Video content through the water surface is generally 
quite difficult to encode efficiently because of ran-
dom movement and nonlinear deformation of objects 
seen through the moving water surface. By generat-
ing one additional frame from the input video 
sequence, which represents the real-entity image of 
bottom objects (Fig. 9), and additionally encoding the 

Fig. 6.   Observed-signal-oriented coding vs. real-entity mining.
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Fig. 7.    Still-camera video-coding results based on real-entity background [12]. (a) Original image. Green box is magnified 
area, (b) original (noisy), (c) real-entity background based coding (Y-PSNR (peak signal-to-noise ratio) = 36.99 dB) 
1/330 compression, and (d) H.265/HEVC (HM16.4) (Y-PSNR = 33.60 dB) 1/330 compression.
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frame and storing it as a long-term reference frame, a 
BD-rate reduction of 12–42% compared to the next-
generation standard VVC under development (refer-
ence software VVC Test Model (VTM)1.1) [14] and 
13–48% compared to VTM4.0, were achieved [15].

3.3    Indexing via machine-to-machine (M2M)-
oriented image coding

Adding annotations to the obtained signal is essen-
tial for organizing omni-ambient data, and of course 
it should be done using machines (not by humans). 
Therefore, information coding that maximizes sub-
jective quality may be less important than coding that 
maximizes machine recognition. One such M2M-
oriented image-coding approach is that by Suzuki et 
al. [16]. The importance of this concept is reflected in 
the recent initiation of a new standardization project 
called Video Coding for Machines [17].

3.4    Reducing amount of original source data via 
compressed sensing

The above-estimated naïve data amount could 
become burdensome for initial-stage transmission. 
Sometimes it may be necessary to reduce the data rate 
at the sensor and (in return) restore the data by addi-
tional data processing. To achieve this, a compressed 
sensing technique [18] will be applied.

4.   Conclusion

An overview was given of the rapidly increasing 
amount of data generated by ubiquitously deployed 
multi-modal devices, standardization trends to cope 
with such data, and possible applications by fully 
using the data that cover the entire world, i.e., omni-
ambient data. The physical amount of such data was 
evaluated, and it was noted that visual data are domi-
nant; therefore, efficient compression is crucial. Then 
the possibility of such compression by using mutual 
information among multi-modal signals was  

Fig. 8.    Rigid-object video-coding results based on real-entity mining approach [13]. (top-left) Former Versatile Video Coding 
(VVC); experimental model JEM5, rate = 1,857,505 bytes (noisy, similar to original), (top-right) real-entity mining 
based coding with super-low-rate mode, rate = 13,169 bytes (no noise and crisp), (bottom-left) H.265/HEVC (HM16), 
rate = 15,061 bytes (distorted), (bottom-right) JEM5, rate = 13,617 bytes (distorted).

Fig. 9.    Real-entity extraction example [15]. (a) Original water-bottom video frame under moving water surface (skewed), (b) 
temporal median filter result (blurred), (c) real-entity mining based  (crisp and not skewed), (d) original water-bottom 
image under still water surface (ground truth).

(a) (b) (c) (d)
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discussed. How real-entity mining would help reduce 
noise, enable further compression, and improve sub-
jective video quality was also discussed. We will 
continue investigating and tackling the challenges 
and taking advantage of the opportunities of this 
research, expanding the potential for more applica-
tions.
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