
NTT Technical Review 41Vol. 18 No. 1 Jan. 2020

1. A huge amount of database processing

Machine-to-machine communication is featured in
services with Internet of Things (IoT) and various
web services. For example, IoT devices automatically
connect to each other or web services by automati-
cally calling one another’s web application program-
ming interface (API) to generate efficient and attrac-
tive new services. Thus, massive amounts of database
processing we have never experienced are generated
every day. The number of transistors has increased
under Moore’s Law by increasing the number of cen-
tral processing unit (CPU) cores (Fig. 1). However,
the current database design does not take into account
many-core CPU machines. It is well-known that the
processing speed of a database decreases under
many-core CPU environments [1]. To obtain suffi-
cient processing throughput of a database, Tu et al.
proposed Silo for read-mostly workloads in which
Silo scales up the processing speed on many-core
CPU environments [2]. However, Silo does not scale
for write-heavy workloads.

We need to update a database with huge amounts of
sensor data, such as placement, temperature, and sta-
tus, for hundreds of thousands of items in supply
chain management. In database processing, such as
cashless payment, micropayment, and small remit-
tance, the amount of updating data will dramatically

increase. These processes must be executed at a cer-
tain isolation*1 level of the transaction. When each
CPU core processes its tasks in parallel, current
methods, such as Silo, guarantee a strong isolation
level by processing update operations one by one for
the same data items. However, this decreases process-
ing speed because each CPU core waits for the others
then continues to process its own tasks.

Figure 2 plots the total processing throughput of
current methods for increasing the number of CPU
cores. After the upper limit of processing speed for 38
cores, as shown on the x-axis, total throughput
decreases as the number of CPU cores increases.
Therefore, if the processing speed is not sufficient in
terms of service requirements, database administra-
tors generally accelerate processing speed by select-
ing a weak isolation level*2. However, this approach
involves risks. For example, in a bitcoin exchange,
engineers adopted a weak isolation level on their
database to increase speed. A cracker group attacked

A Method for High-speed Transaction
Processing on Many-core CPU
Sho Nakazono and Hiroyuki Uchiyama

Abstract
New services have been proposed in fields such as Internet of Things and Fintech (finance & technol-

ogy). Many more services have been developed by automatically calling the application programming
interface of the services among machines or services. Thus, the amount of database processing such as
read, update, and delete with a guarantee of correctness in a database is increasing yearly. This trend will
probably continue. In this article, we introduce a method for high-speed transaction processing on a
many-core CPU (central processing unit) to process these database operations.

Keywords: database, transaction processing, scale-up

*1 Isolation: Transaction isolation means that data processed by a
transaction are protected or isolated from other concurrent trans-
actions. There are levels of transaction isolation. Serializable is
one of the transaction isolation levels and the strictest. Any con-
current execution of a set of serializable transactions are guaran-
teed to produce the same effect as running them one at a time in a
certain order. With our method, one can execute transactions
based on Serializable.

Feature Articles: Phygital-data-centric Computing for
Data-driven Innovation in the Physical World

Feature Articles

42NTT Technical Review Vol. 18 No. 1 Jan. 2020

the exchange system and withdrew all coins in the
exchange illegally. Consequently, the exchange
closed. As shown in this example, if database admin-
istrators set an incorrect isolation level on their data-
base, they may negatively affect their business and
users. Therefore, high-speed processing (especially
update operations) of a database under a correct isola-
tion level is an important technical issue to provide
services safely and at low cost.

2. Our method

As mentioned above, there are methods of acceler-
ating the processing speed for read-mostly work-
loads. However, a method for write-heavy workloads
has not been proposed. This is because each CPU
core must wait if another core accesses the same data
item. To address this issue, NTT Software Innovation
Center developed a method for drastically accelerat-
ing the processing of update operations. Our method
is based on the principle that if no one reads an
updated data item, the update operation is omittable.
With this principle, our method reorders update
operations and generates those that no one reads
under the safest isolation level, i.e., the strict Serializ-
able level.

Figure 3 shows the difference between current
methods and our method. With current methods,

*2 Isolation level: Transaction isolation levels refer to the degree of
transaction isolation. The SQL (Structured Query Language)
standard defines four levels of transaction isolation. For example,
when a database uses the Read Committed isolation level, a
transaction can detect different data for the same query, even
though they are within a single transaction, if other transactions
commit changes after the first read-operations start and before
the second read-operations start. However, in the Read Commit-
ted isolation level, a database processes transactions faster than
in the Serializable isolation level.

Fig. 1. 42 years of trends in microprocessor data.

Transistors (thousands)

Single-thread performance
(SpecINT x 103)

Frequency (MHz)

Typical power (watts)

Number of logical cores

(year)

107

1970 1980 1990 2000 2010 2020

106

105

104

103

102

101

100

Number of transistors is increasing.

Number of cores
is increasing.

Per-core performance
is saturated.

Original data up to 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten.
New plot and data collected for 2010-2017 by K. Rupp.
This chart is provided under the permissive 'Creative Commons Attribution 4.0 International Public License'.
Adjusting points are adding comments.
Original data: https://github.com/karlrupp/microprocessor-trend-data

Fig. 2. Write-heavy benchmark results for current methods.

OCC: optimistic concurrency control
S2PL: strict two-phase locking

25

20

15

10

5

0
1 20 40 60 80 100 120 144

Number of CPU cores

Current methods

S2PL

OCC

TimestampOrdering

TicToc

Silo

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

sa
ct

io
ns

 p
er

 s
ec

.)

Feature Articles

NTT Technical Review 43Vol. 18 No. 1 Jan. 2020

transactions T1, T2, and T3 process update (write)
operations for data item x in parallel. We denote
Write(x) as a transaction that writes a certain value to
x. The x-axis shows the passing of time. With current
methods, when each write-operation is processed, the
related transaction acquires a lock for a data item.
Therefore, T2 can start processing only after T1 pro-
cessing is finished. In the same way, before T2 fin-
ishes processing, T3 cannot start processing. Because
no one reads the values updated by T1 and T2, we can

omit the write-operations related to T1 and T2.
Our method specifies write-operations, the results

of which are not read by anyone, and omits them.
Thus, our method can accelerate the processing of
update operations and generate omittable write-
operations by reordering the read/write-operations of
transactions based on the database theory “multi-
version view serializability.” Our method can process
update operations that current methods cannot do
efficiently. In Fig. 4, we add the results of our method

Fig. 3. Difference between current methods and ours.

CAS: compare-and-swap

Write(x)

Write(x) Write(x)

Current methods:
decides Tx order w/ locks

No one reads

T1

T2

T3

Write(x)

Write(x)

Write(x) Read(x)

Time

The longer the locking duration,
the more throughput is degraded.

Our method:
omits write-operations w/ CAS

Can be omitted

Write(x)

Write(x)T1

T2

T3 Write(x) Read(x)

Time

The larger number of omitted write-operations,
the more throughput is improved.

Evaluation section

wait

wait

Fig. 4. Write-heavy benchmark results for current methods and ours.

25

20

15

10

5

0

1 20 40 60 80 100 120 144

Number of CPU cores

Current methods and ours

Our method

S2PL

OCC

TimestampOrdering

TicToc

Silo

IWR

8x faster8x faster

T
hr

ou
gh

pu
t (

m
ill

io
n

tr
an

sa
ct

io
ns

 p
er

 s
ec

.)

Feature Articles

44NTT Technical Review Vol. 18 No. 1 Jan. 2020

in Fig. 2. In 144 CPU cores, we can see that our
method sufficiently scales up as the number of CPU
cores increases. Our method is about 8x faster than
Silo, which is the current fastest method, and pro-
cesses 20 million operations per second. This
throughput is the same as 1.7 trillion operations per
day [3]. Therefore, our method has sufficient power
to process a possible 1 trillion callings of APIs.

3. Future development

We are developing a built-in database based on our
method and will prepare its interface as a key-value
store. In such a database, users will be able to request
read/write-operations simultaneously. By embedding
this method into databases for various services, we
believe users will be able to develop applications that

fulfill their functions on modern many-core hard-
ware. We also plan to develop other interfaces, such
as SQL and O/R (object-relational) Mapper, for many
users to use.

References

[1] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the Abyss: An Evaluation of Concurrency Control with One
Thousand Cores,” Proc. of the VLDB Endowment, Vol. 8, No. 3, pp.
209–220, 2014.

[2] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
Transactions in Multicore In-memory Databases,” Proc. of the 24th
ACM Symposium on Operating Systems Principles (SOSP’13), pp.
18–32, Farmington, PA, USA, Nov. 2013.

[3] C. Huys, “The API Billionaires Club is about to welcome trillionaire
members. But how should you deal with it?”, AE Stories, 2016.

 https://www.ae.be/blog-en/api-billionaires-club-about-to-welcome-
trillionaires-members

Sho Nakazono
Research Engineer, Distributed Computing

Technology Project, NTT Software Innovation
Center.

He received a B.E. in environment and infor-
mation studies and an M.E. in media and gover-
nance from Keio University, Kanagawa in 2014
and 2016. He joined NTT Software Innovation
Center in 2016 and is studying concurrent pro-
gramming and transaction processing.

Hiroyuki Uchiyama
Senior Research Engineer, Distributed Com-

puting Technology Project, NTT Software Inno-
vation Center.

He received a B.E. and M.E. in systems science
and applied informatics from Osaka University
in 2000 and 2002. He joined NTT Cyber Space
Laboratory in 2002 and studied the XML filter
engine and distributed stream processing. From
2008 to 2014, he joined the commercial develop-
ment project of the distributed key-value store
and distributed SQL query engine. He is cur-
rently studying a high-speed transaction engine,
LASOLVTM Computing System, and optimiza-
tion of hybrid online analytical processing and
machine learning.

https://www.ae.be/blog-en/api-billionaires-club-about-to-welcome-trillionaires-members
https://www.ae.be/blog-en/api-billionaires-club-about-to-welcome-trillionaires-members

