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1.   A huge amount of database processing

Machine-to-machine communication is featured in 
services with Internet of Things (IoT) and various 
web services. For example, IoT devices automatically 
connect to each other or web services by automati-
cally calling one another’s web application program-
ming interface (API) to generate efficient and attrac-
tive new services. Thus, massive amounts of database 
processing we have never experienced are generated 
every day. The number of transistors has increased 
under Moore’s Law by increasing the number of cen-
tral processing unit (CPU) cores (Fig. 1). However, 
the current database design does not take into account 
many-core CPU machines. It is well-known that the 
processing speed of a database decreases under 
many-core CPU environments [1]. To obtain suffi-
cient processing throughput of a database, Tu et al. 
proposed Silo for read-mostly workloads in which 
Silo scales up the processing speed on many-core 
CPU environments [2]. However, Silo does not scale 
for write-heavy workloads.

We need to update a database with huge amounts of 
sensor data, such as placement, temperature, and sta-
tus, for hundreds of thousands of items in supply 
chain management. In database processing, such as 
cashless payment, micropayment, and small remit-
tance, the amount of updating data will dramatically 

increase. These processes must be executed at a cer-
tain isolation*1 level of the transaction. When each 
CPU core processes its tasks in parallel, current 
methods, such as Silo, guarantee a strong isolation 
level by processing update operations one by one for 
the same data items. However, this decreases process-
ing speed because each CPU core waits for the others 
then continues to process its own tasks.

Figure 2 plots the total processing throughput of 
current methods for increasing the number of CPU 
cores. After the upper limit of processing speed for 38 
cores, as shown on the x-axis, total throughput 
decreases as the number of CPU cores increases. 
Therefore, if the processing speed is not sufficient in 
terms of service requirements, database administra-
tors generally accelerate processing speed by select-
ing a weak isolation level*2. However, this approach 
involves risks. For example, in a bitcoin exchange, 
engineers adopted a weak isolation level on their 
database to increase speed. A cracker group attacked 
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*1 Isolation: Transaction isolation means that data processed by a 
transaction are protected or isolated from other concurrent trans-
actions. There are levels of transaction isolation. Serializable is 
one of the transaction isolation levels and the strictest. Any con-
current execution of a set of serializable transactions are guaran-
teed to produce the same effect as running them one at a time in a 
certain order. With our method, one can execute transactions 
based on Serializable.
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the exchange system and withdrew all coins in the 
exchange illegally. Consequently, the exchange 
closed. As shown in this example, if database admin-
istrators set an incorrect isolation level on their data-
base, they may negatively affect their business and 
users. Therefore, high-speed processing (especially 
update operations) of a database under a correct isola-
tion level is an important technical issue to provide 
services safely and at low cost.

2.   Our method

As mentioned above, there are methods of acceler-
ating the processing speed for read-mostly work-
loads. However, a method for write-heavy workloads 
has not been proposed. This is because each CPU 
core must wait if another core accesses the same data 
item. To address this issue, NTT Software Innovation 
Center developed a method for drastically accelerat-
ing the processing of update operations. Our method 
is based on the principle that if no one reads an 
updated data item, the update operation is omittable. 
With this principle, our method reorders update 
operations and generates those that no one reads 
under the safest isolation level, i.e., the strict Serializ-
able level. 

Figure 3 shows the difference between current 
methods and our method. With current methods, 

*2 Isolation level: Transaction isolation levels refer to the degree of 
transaction isolation. The SQL (Structured Query Language) 
standard defines four levels of transaction isolation. For example, 
when a database uses the Read Committed isolation level, a 
transaction can detect different data for the same query, even 
though they are within a single transaction, if other transactions 
commit changes after the first read-operations start and before 
the second read-operations start. However, in the Read Commit-
ted isolation level, a database processes transactions faster than 
in the Serializable isolation level.

Fig. 1.   42 years of trends in microprocessor data.
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Fig. 2.    Write-heavy benchmark results for current methods.
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transactions T1, T2, and T3 process update (write) 
operations for data item x in parallel. We denote 
Write(x) as a transaction that writes a certain value to 
x. The x-axis shows the passing of time. With current 
methods, when each write-operation is processed, the 
related transaction acquires a lock for a data item. 
Therefore, T2 can start processing only after T1 pro-
cessing is finished. In the same way, before T2 fin-
ishes processing, T3 cannot start processing. Because 
no one reads the values updated by T1 and T2, we can 

omit the write-operations related to T1 and T2. 
Our method specifies write-operations, the results 

of which are not read by anyone, and omits them. 
Thus, our method can accelerate the processing of 
update operations and generate omittable write-
operations by reordering the read/write-operations of 
transactions based on the database theory “multi-
version view serializability.” Our method can process 
update operations that current methods cannot do 
efficiently. In Fig. 4, we add the results of our method 

Fig. 3.   Difference between current methods and ours.
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Fig. 4.   Write-heavy benchmark results for current methods and ours.
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in Fig. 2. In 144 CPU cores, we can see that our 
method sufficiently scales up as the number of CPU 
cores increases. Our method is about 8x faster than 
Silo, which is the current fastest method, and pro-
cesses 20 million operations per second. This 
throughput is the same as 1.7 trillion operations per 
day [3]. Therefore, our method has sufficient power 
to process a possible 1 trillion callings of APIs.

3.   Future development

We are developing a built-in database based on our 
method and will prepare its interface as a key-value 
store. In such a database, users will be able to request 
read/write-operations simultaneously. By embedding 
this method into databases for various services, we 
believe users will be able to develop applications that 

fulfill their functions on modern many-core hard-
ware. We also plan to develop other interfaces, such 
as SQL and O/R (object-relational) Mapper, for many 
users to use.
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