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1.   Introduction

Data-communication capacity is increasing at an 
annual rate of 10%, and it is expected to increase 
exponentially on the full-scale introduction of 5G 
(fifth-generation mobile communication) and the 
Internet of Things (IoT). It is a concern that in the 
latter half of the 2020s, the capacity limit of the cur-
rently used optical fiber, namely, single-mode fiber 
(SMF), will be reached. Therefore, we are promoting 
research to overcome the current capacity limit by 
using space-division multiplexing (SDM) in addition 
to conventional wavelength-division multiplexing 
(WDM) [1]. Our research on ultra-high-capacity 
transmission technologies, namely, optical-fiber 
technology for SDM transmission and high-speed 
optical transmission with transmission speeds up to 
terabits (1012 bits) per second, is introduced in this 
article.

2.   SDM optical-fiber technology

As shown in Fig. 1, to create SDM optical fiber that 
can exceed the capacity limit of existing SMF, it is 
feasible to increase the number of cores and modes 
(types of light). The type that uses core multiplexing 

is generally called multi-core fiber (MCF), and the 
type that uses mode multiplexing is generally called 
few-mode fiber (FMF). For few-mode multi-core 
optical fiber (FM-MCF), which combines N cores 
and M modes, it is conceivable that the transmission 
capacity of one optical fiber can be increased up to N 
× M times. 

As shown in the cross-sectional photograph in  
Fig. 2(a), MCF with four cores within the standard 
cladding diameter can be manufactured with the same 
fineness (125-μm diameter) as existing SMF. By 
making MCF have the same diameter as that of exist-
ing SMF, it is possible to use current cable and con-
nector technology. On top of that, each core of the 
resulting MCF is fully compatible with existing 
SMF; as a result, compatibility with current optical 
transmission systems can be improved, and practical-
ity is assured. In fact, while making the optical per-
formance of each core the same as that of existing 
SMF, in proof-of-principle experiments in collabora-
tion with multiple vendors, we prototyped a 100-km-
long 4-core fiber with common specifications, suffi-
ciently reduced leakage between cores (crosstalk), 
and succeeded in optically amplifying and relaying 
data at a transmission capacity of more than 100 tera-
bits per second over 300 km [2]. At NTT R&D Forum 
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2019, a dynamic exhibition using 4-core fiber based 
on the above technologies was held.

An example of the future possibility of increasing 
the amount of spatial multiplexing by more than 100 
times by using FM-MCF (in which each core of the 
MCF supports multi-mode propagation) as the trans-
mission path is shown in Fig. 2(b). The horizontal 
axis shows the number of spatial channels (obtained 
by multiplying the number of cores and number of 
modes), and the vertical axis shows relative spatial-
multiplexing density based on that of existing SMF. 
The circular, square, and triangular plots represent 
the number of modes that can be propagated by each 
core; 3, 6, and 10 modes, respectively. Studies using 

6 modes, 42 (7 cores × 6 modes) and 114 (19 cores × 
6 modes) spatial channels have been conducted (e.g., 
[3]). However, the relative density of the FM-MCF 
was only about 50 times that of existing SMF. 
Accordingly, by increasing the number of modes per 
core to 10, we achieved the world’s highest number of 
spatial channels; 120, via 12 cores × 10 modes and, at 
the same time, a relative density exceeding 100 [4]. 
This is the world’s first study demonstrating that the 
best mix of core multiplexing and mode multiplexing 
can achieve 100 times the potential of existing SMF 
in terms of both spatial-multiplexing amount and 
spatial-utilization efficiency. To construct the above-
mentioned FM-MCF system, it is necessary to (i) 

Fig. 1.   Creation of optical fiber for SDM transmission by core and mode multiplexing.
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Fig. 2.   Examples of R&D on standard-cladding-diameter MCF and FM-MCF.
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increase the diameter of FM-MCF to about 1.5 times 
(about 200 μm) that of existing SMF and (ii) improve 
the manufacturability that can handle large-diameter 
optical fiber and to develop technologies for fabricat-
ing cables. We are also working on large-scale digi-
tal-signal-processing technology for stably multi-
plexing/dividing modes on the transceiver/receiver 
side.

3.   Terabit-class high-speed 
optical-transmission technology

To economically increase the capacity of optical 
communication, it is important to increase channel 
capacity per wavelength, increase the symbol rate, 
and apply high-order multilevel digital modulation/
demodulation technology. Fundamental technologies 
for configuring an ultra-high-speed optical trans-
ceiver required for 1-terabit-class optical transmis-
sion are shown in Fig. 3. The ultra-high-speed optical 
transceiver mainly consists of an ultra-high-speed 
digital-signal-processing circuit, namely, a digital 
signal processor-application specific integrated cir-
cuit (DSP-ASIC), and an ultra-high-speed optical 
front-end circuit (which converts optical signals to 
electrical ones and vice versa). Currently, digital-

signal-processing technology that can operate up to a 
channel capacity of 600 Gbit/s and an optical front-
end circuit—consisting of a driver-integrated coher-
ent driver modulator (CDM) and an integrated coher-
ent receiver (ICR)—are in the practical implementa-
tion phase. Long-distance-transmission experiments 
applying these fundamental technologies in the field 
have been successful [5]. From the standpoint of 
datacenter interconnection and metropolitan area net-
works, etc., optical transceiver circuits must be down-
sized and their power consumption reduced. To 
achieve dramatic miniaturization of ultra-high-speed 
optical-front-end circuit technology, research and 
development (R&D) on a coherent optical sub-
assembly (COSA), in which all optical circuits, 
except for the wavelength-tunable light source, are 
integrated on a single chip, is progressing well. 

R&D on achieving high-speed channel transmis-
sion exceeding 1-Tbit/s capacity per wavelength is 
also underway [6]. Recently, a long-distance WDM 
transmission experiment using existing SMF achieved 
a world-first capacity of 1 Tbit/s per wavelength by 
using a new approach to optical front-end circuit 
technology, namely, an optical and electronic inte-
grated configuration. Moreover, by integrating an 
analog multiplexer integrated circuit (AMUX IC) 

Fig. 3.   Fundamental technologies for enabling 1-Tbit-class high-speed transmission.

IQ: in-phase and quadrature
ADC: analog-to-digital converter
DAC: digital-to-analog converter

TIA: transimpedance amplifier
TLD: tunable laser diode

TLD

Control circuit

TIA

Driver

Integrated module composed
of analog multiplexer

(AMUX) and InP
semiconductor modulator

AMUX integrated circuit
(AMUX IC)

Driver-integrated coherent
driver modulator

(CDM)

Spatial-division multiplexing-
wavelength selective switch

(SDM-WSS)

In-device high-density wiring
technology based on MCF, etc.

Integrated coherent
receiver (ICR)

Coherent optical
sub-assembly

(COSA)

DAC
Polarization-

multiplexing IQ
optical modulator

ADC

DSP

Coherent
receiver

Digital-signal-processing
circuit (DSP)



Feature Articles

17NTT Technical Review Vol. 18 No. 5 May 2020

(with a bandwidth of over 100 GHz) and a broadband 
indium phosphide (InP) semiconductor modulator 
into an integrated module, the world’s fastest channel 
capacity of 1.3-Tbit/s transmission was achieved. 
These fundamental technologies can be used with the 
above-described MCF composed of a conventional 
single-mode core. 

For future  high-capacity, flexible optical networks, 
fundamental technologies such as (i) SDM-wave-
length selective switch (SDM-WSS) integrated tech-
nology (which enables selective switching of signal 
light multiplexed in the space and wavelength 
domains), (ii) high-efficiency wavelength-conversion 
technology, and (iii) in-device high-density wiring 
technology using MCFs are expected to be improved, 
and we will continue to accelerate our R&D accord-
ingly [1, 7].

4.   Future developments

We will work to establish standard-cladding-diam-
eter MCF and its related technologies. By using 
terabit-class high-speed optical-transmission tech-
nology, we also plan to create an ultra-high-capacity 
optical-transmission platform that has 100-times 

more potential than that of existing SMF.
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