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1.   Introduction

Due to progress in the Internet of Things and 
expansion in the use of artificial intelligence, a huge 
amount of data has been handled, exceeding our 
expectations, and this trend is expected to continue. It 
is estimated that the power consumption of informa-
tion and communications equipment will increase at 
an accelerated rate as a result of this increase in data 
processing [1]. If traffic continues to increase and the 
performance of information and communications 
equipment does not change, it is predicted that infor-
mation and communications equipment in 2030 will 
consume nearly twice today’s annual power con-
sumed in Japan. In particular, locations of data pro-
cessing tend to be concentrated in large datacenters, 
and the power requirements for datacenters are 
becoming more stringent at an accelerating data rate. 
For example, the total power consumption of data-
centers in Japan was estimated to be 1% of the 
annual power consumption in Japan in 2015; thus, it 
is important to reduce the power consumption for 

data processing and transmission.
NTT proposed the concept of the Innovative Opti-

cal Wireless Network (IOWN) with ultralow power 
consumption. To achieve this, we are conducting 
research and development (R&D) on photonics-
electronics convergence technology to apply devices 
used for long-distance communications to short-dis-
tance communications. Optical communication tech-
nology has been applied to international long-dis-
tance communications and domestic metro access 
networks and has recently been applied to communi-
cations between datacenters and between racks and 
printed circuit boards in datacenters. Electrical wiring, 
however, is used for communications on such boards 
and between large-scale integrated circuits (LSIs). 
The transmission loss increases with the increase in 
data rate and transmission distance. Optical wiring, 
on the other hand, is characterized by an almost con-
stant transmission loss and small increase in power 
consumption while increasing the data rate. NTT is 
conducting R&D on optical interconnections that apply 
optical technology to short-range communications on 
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printed circuit boards in datacenters to increase the 
speed and reduce power consumption of electronic 
devices used for data processing and transmission.

2.   Device technology for short-range 
optical interconnections

Figure 1(a) shows a block diagram of optical inter-
connection required for information processing. 
Optical transmitters and receivers are placed in the 
vicinity of LSIs to convert electrical signals into opti-
cal signals. High-density integration and low power 
consumption of optical devices, such as semiconduc-
tor laser diodes (LDs), are essential to apply optical 

communication technology to shorter distances.  
Figure 1(b) shows the relationship between the size 
of the active region and energy consumption of 
directly modulated LDs used at various distances. In 
general, when we use LDs with larger active region, 
larger optical output power can be obtained, although 
energy consumption is also increased. In telecommu-
nication, large optical power is required for long-
distance transmission, and LDs with large active 
regions are required. The need to reduce energy costs 
is increasing for data communications such as inter-
board transmission. Vertical cavity surface emitting 
lasers (VCSELs), which are the most widely used 
light sources in current short-distance communications, 

Fig. 1.    Block diagram of an optical interconnection between LSI chips and relationship between an active region of a directly 
modulated LD and energy consumption.
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tend to oscillate in multiple modes because of their 
shape and are not suitable for wavelength division 
multiplexing (WDM) technology. To increase the 
transmission capacity, it is necessary to integrate 
single mode LDs and a wavelength multiplexing cir-
cuit. Although VCSELs can shorten the cavity length, 
which determines the active region, there is a limit to 
the miniaturization of the active region. NTT is devel-
oping thin film (membrane) directly modulated LDs 
fabricated on silicon (Si) substrates as light sources 
for on-board optical interconnections. By fabricating 
LDs on Si substrates, Si photonics technology can be 
applied to integrate WDM circuits and photodiodes at 
high density and low cost. In addition, by fabricating 
LDs on silicon dioxide (SiO2) layers that have a low 
refractive index, the LDs can be miniaturized. We can 
reduce power consumption with this structure owing 
to the large interaction between light and injected car-

riers. We are also developing wavelength-scale cavity 
LDs using photonic crystals to fabricate LDs com-
posed of even smaller active layer regions since the 
energy consumption of a directly modulated LD is 
proportional to the size of the active region.

In the following sections, we describe the fabrica-
tion and characteristics of LDs on Si substrates and 
driver circuit design using complementary metal 
oxide semiconductor (CMOS) technology. We also 
explain an LD using photonic crystals as our approach 
for further reducing the power consumption of LDs.

3.   Thin film on Si substrate (membrane) directly 
modulated laser

Figure 2(a) shows the fabrication procedure of an 
LD on Si substrate [2]. First, optical circuits are 
formed on Si substrates using Si photonics technologies, 

Fig. 2.   Fabrication procedure and structure of an LD on Si.
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then the indium phosphide (InP)-based active layers 
are bonded to the SiO2/Si wafer. The active layers 
consist of indium gallium aluminum arsenide 
(InGaAlAs)-based multiple quantum wells (MQWs). 
Mesa stripes are formed by masking the LD regions 
and etching MQWs. An undoped InP layer is selec-
tively regrown using a metalorganic vapor phase 
epitaxy to fabricate InGaAlAs/InP buried hetero-
structures (BHs), which are island-like active layers 
embedded in thin InP. To inject current into the BHs, 
n-type and p-type doping regions are formed on 
either side of the BHs using Si ion implantation and 
zinc (Zn) thermal diffusion. This structure has advan-
tages in both optical and carrier confinement into 
BHs. Large optical confinement is achieved owing to 
the large refractive index contract between the InP 
and the SiO2 cladding. Carrier confinement is 
achieved due to the electrical bandgap difference 
between the MQWs and surrounding InP that has a 
bandgap larger than the MQWs. These characteristics 
make it possible to reduce the size and power con-
sumption of LDs on Si compared to conventional 
LDs fabricated on InP substrates. The structure of a 
fabricated LD on Si is shown in Fig. 2(b). The laser-
cavity structure is a distributed reflection type that 
has a distributed Bragg reflector (DBR) on the rear 

side of the distributed feedback region. The rear DBR 
allows the lasing light to be selectively emitted from 
the front of the LD, making the BH smaller. On the 
front side of the LD, we integrated spot size convert-
ers using a SiOx waveguide, enabling efficient optical 
coupling with optical fibers.

Figure 3(a) shows the injected current versus opti-
cal output power of the fabricated LD. We obtained 
continuous-wave operation at room temperature with 
a threshold current of 1.6 mA and lasing wavelength 
of 1.3 μm. Continuous-wave operation was possible 
up to 95ºC. Figure 3(b) shows eye diagrams of eight 
LDs integrated on the same wafer. The bit rate was 
25.8 Gbit/s with the non-return-to-zero (NRZ) for-
mat. The energy consumption of a single LD was 200 
fJ/bit, which was on the same order of that of 
VCSELs. WDM circuits can also be integrated 
monolithically with the same structure [3].

We were successful in fabricating membrane LDs 
as low-power-consumption light sources that can 
provide single-mode lasing and have excellent capa-
bility for monolithic integration.

4.   CMOS driver circuit technology

This section describes the electrical circuits used to 

Fig. 3.   Characteristics of LDs on Si.

(a) Temperature dependence on bias current vs. optical output power of an LD on Si (b) Eye diagrams of 8 LDs on Si
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drive the LDs. An LD needs to be driven by an elec-
tric current to emit light. However, general digital 
electric circuits, such as LSIs, operate with voltage as 
a signal, so a driver circuit is required to convert volt-
age signal into current. The optical transmitter shown 
in Fig. 4 consists of an electrical component (the 
driver circuit), optical component (LD), and connect-
ing components such as the wiring. This circuit oper-
ates as follows. The current from the constant current 
source is branched (shunt) to flow to either the tran-
sistor side or LD side. At this point, when a high-
speed electrical signal is input from the left side using 
a voltage, the transistor acts as a switch and turns on/
off. Since the constant-current source continues to 
supply a constant current, a current flows to the tran-
sistor side when the transistor is turned on. Less cur-
rent flows to the LD side, and no light is emitted. 
When the transistor is turned off, however, current 
flows to the LD side, and light is emitted. Therefore, 
the light emission of an LD can be turned off and on 
by turning on and off the transistor.

The requirements for driver circuits are high-speed 
operation, low power consumption, and small size. 
To meet these requirements, we selected CMOS tech-
nology to fabricate the transistors and applied our 
core opto-electronic integrated design technology [4] 
to the electrical circuits. It was necessary to fabricate 
a prototype of the optical transmitter, measure the 
characteristics of the electrical and optical compo-
nents, and redesign to tune the parameters of the 
components. With our opto-electronic integrated 
design technology, we constructed a model in which 
the optical and connecting components are replaced 

with an electric equivalent circuit. By incorporating 
this model into the field of electrical circuitry where 
simulation and design tools are mature, it is possible 
to make performance predictions through integrated 
design.

Next, we describe a small mounting structure of the 
optical transmitter (Fig. 5(a)). For the electrical con-
nection, the surface of the CMOS driver circuit chip 
is mounted on the surface of the LD chip. This not 
only reduces the chip area but also shortens the elec-
trical-wiring connection, reducing the parasitic 
inductance and allowing high-speed signals to pass 
through. For optical connections, we connected a 
4-channel optical fiber array directly to the end facet 
of the LD chip with a width of 1 mm, enabling small 
and low-loss optical connections.

The characteristics of the optical transmitter are 
shown in Fig. 5(b) [5]. A pseudo random bit string (7 
steps) with a bit rate of 25 Gbit/s NRZ is input to each 
channel, and the transmitter consists of 4 channels to 
achieve a transmission capacity of 100 Gbit/s. The 
inset shows the eye diagram of the optical signal out-
put from one channel, and we obtained an eye open-
ing with an extinction ratio of 3 dB or more. As a 
result of evaluating the bit error rate after propagating 
a standard single mode fiber of 1.2 km, we confirmed 
that error-free transmission (bit error rate < 10–12) can 
be achieved even when four channels are simultane-
ously driven. Since the total power consumption of 
the optical transmitter is 267 mW, the power effi-
ciency is 2.67 pJ/bit, and low power consumption was 
achieved.

Fig. 4.   Configuration and operation of the optical transmitter.
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5.   LEAP lasers

As explained in Fig. 1(b), further reduction in 
energy consumption is required for interconnection 
on printed circuit boards and between chips, and LDs 
with small active area are required. NTT developed 
small LDs using photonic crystals [6]. Figure 6 
shows scanning electron microscopic images of one 
of these LDs. Photonic crystals are artificial periodic 
structures, and the periodicity of refractive index is 
the same as the wavelength of light. This structure 

allows the light to be localized very strongly in the 
designed region. We fabricated these LDs with an 
active layer embedded in an InP photonic crystal by 
using BH technology. We call these LDs lambda-
scale embedded active region photonic crystal 
(LEAP) lasers because of their structure.

Figure 7(a) shows the injection current versus opti-
cal output power of a LEAP laser at room tempera-
ture. Even with such a small LD, we achieved contin-
uous-wave operation at room temperature and a 
record low threshold current of 4.8 μA. Figure 7(b) 

Fig. 5.   Fabricated optical transmitter.
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shows a direct modulation waveform with an NRZ 
signal of 10 Gbit/s at a bias current of 25 μA. Direct 
modulation was possible even with such a small bias 
current, and a record low-energy consumption of 4.4 
fJ/bit was achieved with a single LD.

Therefore, we demonstrated that power consump-
tion can be much lower with LEAP lasers. LEAP 
lasers can be formed not only on InP substrates but 
also on Si substrates by combining them with the 
bonding technology described in the previous sec-
tion.

6.   Future developments

The semiconductor LDs on Si substrates introduced 
in this article can be integrated with Si photonic 
devices and driven with low power consumption by 

using a CMOS driver. We will continue to strive for 
higher transmission capacity and higher density inte-
gration and further advance integration with informa-
tion processing circuits such as in central and graph-
ics processing units (Fig. 8). We will also conduct 
further research and development to contribute to the 
development of future information processing infra-
structure.
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