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1.   Introduction

Data processing infrastructures based on comple-
mentary metal oxide semiconductors (CMOS) have 
seen continuous growth owing to the huge progress in 
semiconductor fabrication technologies. However, 
increases in leakage current and wiring resistance due 
to the miniaturization of electronic circuits will put an 
end to this continuous growth in the near future [1]. 
Accordingly, we are seeing accelerated exploration of 
novel technologies in all domains of science and 
technology towards the next generation of scalable 
data processing infrastructure. Moreover, latency has 
been worsening because the increase in wiring resis-
tance also limits the response speed of electronic 
circuits (known as resister-capacitor time constant), 
which would limit the future development of applica-
tions related to communications security, real-time 
control, financial transactions, and so on. Note that 
latency can be reduced by inserting repeaters in elec-
tronic wires. This method is not energy efficient and 
would not help to overcome the traditional trade-off 

between latency and energy consumption.
It is expected that this latency problem can be dras-

tically mitigated using light for processing not only 
for communication because an optical signal can 
propagate through photonic circuits at the speed of 
light. Additionally, if the elemental photonic devices 
comprising a photonic circuit become smaller, the 
total optical pass length in the circuit will become 
shorter. Thus, further reducing device size lowers 
latency [2]. Our group developed high-performance 
micro/nanophotonic devices, e.g., nanolasers [3], 
nanophotodetectors [4], nanomodulators, and optical 
transistors [5], which should be fundamental building 
blocks for fabricating low-latency nanophotonic pro-
cessors. We also developed the first high-performance 
ultralow-latency optical logic gate based on light-
interference, called a Ψ (psi) gate based on its shape 
(Fig. 1(a)), as another building block [6].

In this article, we introduce the concept and a brief 
theoretical background of Ψ gates and the experi-
mental demonstration of various optical logic opera-
tions with a single Ψ gate. We also present preliminary 
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on-chip integration of a Ψ gate and other photonic 
components for stable operation. Next, we show how 
to use Ψ gates for optical multibit AND circuits and 
estimate latency, which is 10 times lower than the 
best case of CMOS electronic circuits. Finally, we 
conclude with the potential of using Ψ gates in 
ultralow-latency photo-electronic-converged accel-
erators.

2.   Logic operations with a silicon wire Ψ gate

Light-interference is a linear phenomenon, so it has 
been too primitive to carry out various logic opera-
tions, and the functions and performance were limit-
ed. However, almost all representative Boolean logic 
operations can be carried out with a single linear gate 
by introducing the concept of bias light and adjusting 
the input conditions [7]. Such multiple interference 
systems can be implemented using silica planer light-
wave circuits [8], silicon (Si) photonics [9], and plas-
monics [10]. The footprint of the gates is crucial for 
dense integration. Therefore, if we only need to make 
it as small as possible, we should choose plasmonics 
as the platform. However, we need to consider inser-
tion loss to consider the configuration for multibit 
operations (discussed in Section 5). We found that the 
most promising platform is Si photonics. 

Our Ψ gate (Fig. 1(a)) has three input ports and one 
output port (the Ψ gate is a part of a 3 × 3 interferom-
eter with two extra hidden radiation ports). Two of 
them are signal ports (A and B), and the center one is 
a bias port (denoted as Bias). The two sequences of 
the intensity modulated signals are input into A and B 
(relative input powers of both signals PA and PB are 
varied between P0 and P1) with a fixed relative phase 
relationship. In contrast, the intensity of the bias light 
is fixed at PBias. The optical output signal power Pout 

through a Ψ gate is then given as follows [6];

Pout = (√
—
PATA + √

—
PBTB cos∆Φ + 

√
—
PBiasTBias cos∆ΦBias)2 + 

(√
—
PBTB sin∆Φ + √

—
PBiasTBias sin∆ΦBias )2,

� (1)

where TX is the transmittance from each input port X 
to the output port (satisfying TA + TB + TBias ≤ 1 due 
to the linearity), and ∆Φ and ∆ΦBias are the relative 
output phases of B and Bias to the output of A, 
respectively. Within this degree of freedom, for 
example, we can implement an optical AND logic 
operation, as shown in Fig. 1(b). 

In this situation, we set TA = TB ~ 0.39, TBias ~ 0.20 
(TA + TB + TBias ~ 0.98), ∆Φ = 0, ∆ΦBias = π, and PBias 
~ 0.48 for the maximum binary contrast (BC) of 9.54 
dB [7]. From the simulated intensity distributions of 
Fig. 1(b), the operation result appears just after the 
multiple interference part of the Ψ gate. This means 
the AND operation is carried out by just passing the 
light through the 3-µm-long Ψ gate. Therefore, the 
physically limited computation latency of a single 
AND operation is ~30 fs. This latency is more than 
100 times lower than that of CMOS electronics (~10 
ps). From the Pout of (A, B) = (1, 1), we define signal 
loss (SL) as 10 log10 (Pout/P1) (SL becomes 0 dB when 
Pout = P1 = 1). By using the Si photonics platform, we 
can obtain SL < 0.5 dB. Even if we try to fabricate a 
similar interferometer based on loss-less half mirrors, 
SL becomes ~1.25 dB. As far as we know, there have 
been no reports on optical logic gates with such low 
SL. The required relative bias power PBias/P1 for the 
maximum BC for an AND operation can be derived 
from Eq. (1) as follows;

Fig. 1.   �A Si wire Ψ gate. (a) An illustration of Ψ gate operation. (b) An example of simulated AND logic operation (λ =  
1.54 µm). The horizontal white bar at bottom-right inset indicates a 1-µm-long scale bar.
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PBias

P1 
 = TA

4TBias
 (1 + 3 P0

P1 )
2�
� (for AND).  (2)

Here, PBias/P1 is determined from the ratio of TA and 
TBias. Larger TA gives larger Pout (smaller SL); on the 
other hand, PBias/P1 becomes larger (larger total input 
power into a Ψ gate). In the case of Fig. 1(b), we bal-
ance TA and TBias according to the minimization of 
net loss [6]. By keeping the same ∆Φ and ∆ΦBias, 
PBias/P1 for XNOR and NOR operations can be 
derived as follows;

PBias

P1 
 = TA

TBias
 (1 + P0

P1 )
2�

� (for XNOR),  (3)

PBias

P1 
 = TA

4TBias
 (3 + P0

P1 )
2
� (for NOR).  (4)

This means we can switch AND, XNOR, and NOR 
logic operations by only adjusting PBias. All the rep-
resentative logic operations can be implemented, as 
shown in Table 1, by adjusting the input conditions. 
In terms of cascade connection, it only allows lin-
early separable combinations (e.g., multibit AND, 
multibit NOR, etc.). To expand functionality, it is 
necessary to apply some nonlinearity by inserting 
optical-electronic-optical conversions through opti-
cal transistors [5].

3.   High-speed optical logic operations

A sample of a silicon wire Ψ gate was fabricated on 
a silicon-on-insulator (SOI) substrate with a 220-nm-
thick top Si layer. An e-beam resist was spin-coated 
on the substrate, and the resist pattern was formed 
after e-beam writing and development. The resist pat-
tern was transferred to the Si layer by using dry etch-
ing. After the resist was removed, polymer spot size 
converters [11] were fabricated for the input/output 

ports by using 2nd e-beam lithography.
Figure 2 illustrates our setup for demonstrating 

high-speed logic operations. We used several off-chip 
optical components connected with several fiber 
patch cords. However, the relative phases of the input 
signals are always affected by phase fluctuations due 
to the mechanical vibrations of the fibers. To elimi-
nate such fluctuation, we used fiber stretchers con-
trolled using a digital proportional integral differen-
tial (PID) regulator. First, the laser light was split into 
two using a tunable coupler. One is intensity-modu-
lated input for signal ports A and B, and the other is 
an invariant input for the bias port. To generate arbi-
tral optical bit patterns, an optical transmitter con-
nected to a pseudo random pulse pattern generator 
with a radio-frequency signal multiplexer was used 
(up to 64 Gbit/s). The generated optical bit patterns 
were separated into two by using a 3-dB coupler. 
After intensity tuning with a multi-channel variable 
optical attenuator, the bottom-side signal was delayed 
using a fiber delay line so that the Ψ gate under the 
test effectively had two different pseudo random bit 
patterns for signal ports A (top-side) and B (bottom-
side). All the input and output lights were coupled to 
the SOI chip by using a lens module and lensed fiber. 
The output light was amplified through an erbium-
doped fiber amplifier. After removing the amplified 
spontaneous emission noise by using an optical band-
pass filter, the output bit patterns were observed using 
an optical sampling oscilloscope with a bandwidth of 
70 GHz. For the optical phase lock loops between 
signals and bias light, we obtained an individual 
phase difference between signals and a bias light (the 
bias channel is set as the phase standard). The phase 
of the bias light was weakly modulated using the 
fiber-input phase shifter (PS) with 200 kHz for the 
dithering. The converted electrical signals through 
two channels of the photo receiver were input to a 

Table 1.   �Optical input/output table for linear optical logic gate operations in silicon wire Ψ gates  
with and without bias input.

PA PB

∆Φ 0 π 2π/3 0 2π/3

PBias/P1 0 TA/4TBias TA/TBias 9TA/4TBias TA/TBias

∆ΦBias – π −2π/3

0
0
1
1

0
1
0
1

0
TA

TA

4TA

0
TA

TA

0
XOR

0
TA

TA

TA

OR

TA/4
TA/4
TA/4

9TA/4
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TA

0
0

TA
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9TA/4
TA
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TA

NOR
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TA

TA

0
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BC [dB] 6 ∞ ∞ 9.5 ∞ 9.5 ∞
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digital PID regulator. This PID regulator includes a 
high-voltage amplifier for directly driving the fiber 
stretcher.

Figure 3 summarizes various logic operations 
obtained from a single Ψ gate. The output power of 
the tunable laser diode was set to 8 dBm for the dem-
onstration. Figure 3(a) shows the input and output 
optical time waveforms of 10-Gbit/s XOR, OR, 
AND, XNOR, and NOR logic operations with proper 
input conditioning according to Table 1. We clearly 
demonstrated the basic concept of the linear optical 
logic operations. The XOR and OR operations do not 
require the bias input. In our demonstration, however, 
a fraction of PBias was required for optical phase lock-
ing. The AND, XNOR, and NOR operations exhibit 
BC of ~9.3 dB, > 10 dB, and ~9.0 dB with PBias/P1 ~ 
0.62, 1.6, and 3.1, respectively. The experimental 
PBias/P1 fits well to the analytical prediction of Eqs. 
(2)–(4) by taking into account the finite extinction 
ratio (ER) of the input signals (ER = 10 log10(P1/P0) 
~ 13–23 dB). Figure 3(b) shows the case for 40-Gbit/s 
pseudo random bit sequence AND and NOR opera-
tions. Both operations seemed to work with some 
degradation because of the finite rise/fall time of the 
input signals (~30 ps). However, the Ψ gate never 
became the bottleneck of the operation bandwidth 
because of the quite flat spectral response over 100 
nm in the wavelength [6]. Figure 3(c) illustrates a 

10-Gbit/s wavelength insensitive AND operation in 
telecom wavelength (1535–1565 nm). By calibrating 
PBias/P1 for each λ, a similar BC was achieved for all 
the tested input wavelengths. In this demonstration, 
the input signal bit sequences and operations were the 
same for all λ. It should be noted, however, that we 
can simultaneously carry out different operations for 
each wavelength channel by varying the input condi-
tions (that is, totally independent parallel logic opera-
tions are possible up to the number of input channels 
with a single Ψ gate). This is unique and benefits our 
linear gates compared to nonlinear gates. Note that 
the demonstrated input wavelength range was actu-
ally limited by our setup, and the flatness of the trans-
mission spectra and optical damage threshold should 
be improved by applying further structural optimiza-
tion of Si wire Ψ gates. Ultimately, massive-parallel 
operations are expected to be carried out with more 
than several dozen wavelength channels in the 1400–
1600 nm wavelength range.

4.   Preliminary on-chip integration with PSs

Towards practical applications, it is important to 
show the feasibility of the on-chip integration to dem-
onstrate the phase stability without any optical phase 
lock loops. Therefore, we also fabricated a Si Ψ gate 
with several thermo-optic PSs, as shown in Fig. 4(a). 

Fig. 2.   �Experimental setup for verifying high-speed operation of Ψ gates. The inset shows a scanning electron microscope 
image of the measured Ψ gate.
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For each arm, a pair of a Mach-Zehnder modulator 
(MZM) and PS are inserted to generate signals A and 
B, and PBias, ∆Φ and ∆ΦBias are adjusted. After con-
ditioning all nine heaters, each MZM was operated 
with two different frequencies (2 and 1 kbit/s). Then 
nearly ideal AND and NOR operations with a BC of 
~9.5 dB were demonstrated, as shown in Fig. 4(b). 
All the phase modulators (PMs) should be replaced 
with other shorter (10–50 µm) and faster (40–100 
GHz) PMs [12] to achieve both much lower latency 
and higher throughput.

5.   Multibit AND circuit by cascading Ψ gates

Figure 5(a) illustrates an optimized multibit AND 
circuit (8-bit) in terms of latency. In this configura-
tion, we need to use a specific Ψ gate with a 1:1:1 
splitting (combining) ratio that enables truly loss-less 
AND operation (if PA = PB = 1, PBias = 1, ∆ΦBias = 0, 
then Pout = 3, which means no radiation loss) with 
phase-bit operation (when the digital input is “0” or 

“1,” the corresponding PM modulates the relative 
phases ∆ΦA and ∆ΦB between π (out-of-phase) and 0 
(in-phase)). Therefore, all the signal ports connect 
with PMs directly (no MZMs). However, this phase-
bit operation is only available for the first stage 
because the output of the phase-shift keying opera-
tion is not phase bit but amplitude bit. For the inter-
mediate in-phase combining, Y gates are used. At the 
final stage (and the first splitting stage), the Ψ gates 
with a 2:1:2 combining (splitting) ratio are optimal 
for 8-bit operation to minimize insertion loss (note 
that the optimal ratio for other bit-number operations 
is different). The combined optical signal is converted 
by the electrical signal and digitized through a low-
latency threshold operator such as a sense amplifier 
[13]. It should be noted that the BC of the multibit 
AND operation degrades with the number of the cas-
cade connection. However, the sense amplifier can 
operate even with a small BC if the absolute output 
intensity difference between fully matched (all the 
digital input are “1”) and unmatched (more than one 

Fig. 3.   �Experimental linear optical logic operations observed with a single Ψ gate. (a) Time waveforms of optical input signals 
and outputs demonstrating 10-Gbit/s XOR, OR, AND, XNOR, and NOR logic operations. (b) Time waveforms of 
optical input signals and outputs demonstrating 40-Gbit/s pseudo random bit sequence AND and NOR logic 
operations. (c) Time waveforms of optical input signals and outputs demonstrating input wavelength-insensitive 
10-Gbit/s AND logic operations. Colors denote different input wavelengths (purple: 1535 nm, blue: 1540 nm, light 
blue: 1545 nm, green: 1550 nm, orange: 1555 nm, red-orange: 1560 nm, red: 1565 nm).
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input is “0” etc.) cases is large enough (typically a 
difference of 10–100 µW is acceptable). Therefore, 
the BC does not directly limit the feasibility of multi-
bit AND operation. A very similar method was also 
proposed and demonstrated in CMOS logic circuits 
based on the current-race method [14]. In the current-
race method, the currents from the multiple bit chan-
nels (“0” or “1” corresponds to zero or nonzero cur-
rent output for each bit channel, respectively) are 
combined through electronic wires, and the combined 
current is digitized through a sense amplifier. In the 

case of our photonic method, the signal-combining 
time can be much shorter than the case of electronics, 
as we mentioned above. On the other hand, we have 
an overhead of optoelectric conversion (charging) 
delay due to the resistance-capacitance time constant 
of the used photodetector, but this could be drasti-
cally mitigated using an ultralow-capacitance (~1 fF) 
photodetector [15], as discussed in the next para-
graph.

The computation latency of multibit AND circuits 
was estimated, as shown in Fig. 5(b). We compared 

Fig. 4.   �Preliminary on-chip integration of a Ψ gate with three MZMs, three PSs, and a Ψ gate. (a) Optical microscope image 
of the whole circuit. (b) Time waveforms of optical input signals and outputs demonstrating AND and NOR logic 
operations.
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the configurations with and without using Ψ gates 
and used an ultralow-capacitance photodetector with 
1 fF [15]. For instance, the estimated latency for N = 
128 (practical level) is ~14.6 ps. The additional 
charging delay of w/ Ψ gates always becomes half of 
only Y gates thanks to twice the BC (30% reduction 
under the same input power of 1 mW). This latency is 
already 10 times lower than that of the fastest CMOS 
128-bit AND circuits [16]. We can also apply wave-
length division multiplexing by using more than two 
input lasers with different wavelengths and corre-
sponding wavelength-selective (resonator-type) 
electro-optic PMs, further decreasing latency. 
Although it is also possible to use repeaters for laten-
cy compensation, it is no longer energy efficient. The 
example of this multibit AND circuit application 
indicates that photonic processing would break the 
traditional trade-off between latency and energy con-
sumption in CMOS electronics.

6.   Conclusion

We experimentally demonstrated ultrashort, sim-
ple, integrable, and wavelength insensitive Si wire Ψ 
gates towards ultralow-latency photonic processing. 
From the gate length, the minimum computation 
latency of single logic operation is only ~30 fs, which 
is more than 100 times lower than that of CMOS 
electronics. The optical signal loss is also much lower 
than any other optical gates. The operation function 
can be switched among XOR, OR, AND, XNOR, 
NOR, and NAND with a single Ψ gate by tuning 
input conditions. We also verified the feasibility of 
on-chip integration for stable operation. Finally, we 
suggested the original configuration for multibit 
AND circuits by cascading Ψ and Y gates. By using 
this configuration, 128-bit AND operation can be car-
ried out at 10 times lower latency than cutting-edge 
CMOS electronics. Latency can be further lowered 
by combining with multibit AND circuits and wave-
length division multiplexing with a larger number of 
wavelength channels and by using smaller PMs based 
on micro rings.

We gave an example of logic operations based on 
linear optical gates. However, linear optical gates can 
perform specific vector-matrix operations (transfor-
mations) without consuming energy. The demon-
strated digital-like logic operations are just a specific 
case of these operations. Therefore, it is expected that 
low-latency, low-power consumption linear-gate-
based vector-matrix operations will be more crucial 
for photo-electronic-converged artificial-neural-net-

work-accelerator applications [17].
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